NEWS.md
dbExistsTable
to catch update AWS error message.dbplyr 2.3.3.9000+
AWS_ROLE_ARN
. This caused confusing when connecting through web identity (RAthena # 177)dbplyr::in_catalog
when working with dplyr::tbl
(RAthena # 178)dbClearResult
(RAthena # 168). Thanks to @juhoautio for the request.paws
parameters (RAthena # 169)endpoint_override
parameter allow default endpoints for each service to be overridden accordingly (RAthena # 169). Thanks to @aoyh for the request and checking the package in development.noctua_options
to change 1 parameter at a time without affecting other pre-configured settingsretry_quiet
parameter in noctua_options
function.dbplyr
2.0.0 backend API.dplyr
to benefit from AWS Athena unload
methods (#174).AWS Athena UNLOAD
(#160). This is to take advantage of read/write speed parquet
has to offer.import awswrangler as wr
import getpass
bucket = getpass.getpass()
path = f"s3://{bucket}/data/"
if "awswrangler_test" not in wr.catalog.databases().values:
wr.catalog.create_database("awswrangler_test")
cols = ["id", "dt", "element", "value", "m_flag", "q_flag", "s_flag", "obs_time"]
df = wr.s3.read_csv(
path="s3://noaa-ghcn-pds/csv/189",
names=cols,
parse_dates=["dt", "obs_time"]) # Read 10 files from the 1890 decade (~1GB)
wr.s3.to_parquet(
df=df,
path=path,
dataset=True,
mode="overwrite",
database="awswrangler_test",
table="noaa"
);
wr.catalog.table(database="awswrangler_test", table="noaa")
library(DBI)
con <- dbConnect(noctua::athena())
# Query ran using CSV output
system.time({
df = dbGetQuery(con, "SELECT * FROM awswrangler_test.noaa")
})
# Info: (Data scanned: 80.88 MB)
# user system elapsed
# 57.004 8.430 160.567
noctua::noctua_options(cache_size = 1)
# Query ran using UNLOAD Parquet output
system.time({
df = dbGetQuery(con, "SELECT * FROM awswrangler_test.noaa", unload = T)
})
# Info: (Data scanned: 80.88 MB)
# user system elapsed
# 21.622 2.350 39.232
# Query ran using cache
system.time({
df = dbGetQuery(con, "SELECT * FROM awswrangler_test.noaa", unload = T)
})
# Info: (Data scanned: 80.88 MB)
# user system elapsed
# 13.738 1.886 11.029
AWS Athena
timestamp with time zone
data type.list
when converting data to AWS Athena
SQL
format.
library(data.table)
library(DBI)
x = 5
dt = data.table(
var1 = sample(LETTERS, size = x, T),
var2 = rep(list(list("var3"= 1:3, "var4" = list("var5"= letters[1:5]))), x)
)
con <- dbConnect(noctua::athena())
#> Version: 2.2.0
sqlData(con, dt)
# Registered S3 method overwritten by 'jsonify':
# method from
# print.json jsonlite
# Info: Special characters "\t" has been converted to " " to help with Athena reading file format tsv
# var1 var2
# 1: 1 {"var3":[1,2,3],"var4":{"var5":["a","b","c","d","e"]}}
# 2: 2 {"var3":[1,2,3],"var4":{"var5":["a","b","c","d","e"]}}
# 3: 3 {"var3":[1,2,3],"var4":{"var5":["a","b","c","d","e"]}}
# 4: 4 {"var3":[1,2,3],"var4":{"var5":["a","b","c","d","e"]}}
# 5: 5 {"var3":[1,2,3],"var4":{"var5":["a","b","c","d","e"]}}
#> Version: 2.1.0
sqlData(con, dt)
# Info: Special characters "\t" has been converted to " " to help with Athena reading file format tsv
# var1 var2
# 1: 1 1:3|list(var5 = c("a", "b", "c", "d", "e"))
# 2: 2 1:3|list(var5 = c("a", "b", "c", "d", "e"))
# 3: 3 1:3|list(var5 = c("a", "b", "c", "d", "e"))
# 4: 4 1:3|list(var5 = c("a", "b", "c", "d", "e"))
# 5: 5 1:3|list(var5 = c("a", "b", "c", "d", "e"))
v-2.2.0 now converts lists into json lines format so that AWS Athena can parse with sql
array
/mapping
/json
functions. Small down side a s3 method conflict occurs when jsonify is called to convert lists into json lines. jsonify
was choose in favor to jsonlite
due to the performance improvements (#156).
dbIsValid
wrongly stated connection is valid for result class when connection class was disconnected.sql_translate_env.paste
broke with latest version of dbplyr
. New method is compatible with dbplyr>=1.4.3
(#149).sql_translate_env
: add support for stringr
/lubridate
style functions, similar to Postgres backend.write_bin
now doesn’t chunk writeBin if R version is greater than 4.0.0 https://github.com/HenrikBengtsson/Wishlist-for-R/issues/97 (#149)dbConnect
add timezone
parameter so that time zone between R
and AWS Athena
is consistent.AthenaConnection
class: ptr
and info
slots changed from list
to environment
with in AthenaConnect
class. Allows class to be updated by reference. Simplifies notation when viewing class from RStudio environment tab.AthenaResult
class: info
slot changed from list
to environment
. Allows class to be updated by reference.By utilising environments for AthenaConnection
and AthenaResult
, all AthenaResult
classes created from AthenaConnection
will point to the same ptr
and info
environments for it’s connection. Previously ptr
and info
would make a copy. This means if it was modified it would not affect the child or parent class for example:
# Old Method
library(DBI)
con <- dbConnect(noctua::athena(),
rstudio_conn_tab = F)
res <- dbExecute(con, "select 'helloworld'")
# modifying parent class to influence child
con@info$made_up <- "helloworld"
# nothing happened
res@connection@info$made_up
# > NULL
# modifying child class to influence parent
res@connection@info$made_up <- "oh no!"
# nothing happened
con@info$made_up
# > "helloworld"
# New Method
library(DBI)
con <- dbConnect(noctua::athena(),
rstudio_conn_tab = F)
res <- dbExecute(con, "select 'helloworld'")
# modifying parent class to influence child
con@info$made_up <- "helloworld"
# picked up change
res@connection@info$made_up
# > "helloworld"
# modifying child class to influence parent
res@connection@info$made_up <- "oh no!"
# picked up change
con@info$made_up
# > "oh no!"
AWS Athena
data types [array, row, map, json, binary, ipaddress]
(#135). Conversion types can be changed through dbConnect
and noctua_options
.
library(DBI)
library(noctua)
# default conversion methods
con <- dbConnect(noctua::athena())
# change json conversion method
noctua_options(json = "character")
noctua:::athena_option_env$json
# [1] "character"
# change json conversion to custom method
noctua_options(json = jsonify::from_json)
noctua:::athena_option_env$json
# function (json, simplify = TRUE, fill_na = FALSE, buffer_size = 1024)
# {
# json_to_r(json, simplify, fill_na, buffer_size)
# }
# <bytecode: 0x7f823b9f6830>
# <environment: namespace:jsonify>
# change bigint conversion without affecting custom json conversion methods
noctua_options(bigint = "numeric")
noctua:::athena_option_env$json
# function (json, simplify = TRUE, fill_na = FALSE, buffer_size = 1024)
# {
# json_to_r(json, simplify, fill_na, buffer_size)
# }
# <bytecode: 0x7f823b9f6830>
# <environment: namespace:jsonify>
noctua:::athena_option_env$bigint
# [1] "numeric"
# change binary conversion without affect, bigint or json methods
noctua_options(binary = "character")
noctua:::athena_option_env$json
# function (json, simplify = TRUE, fill_na = FALSE, buffer_size = 1024)
# {
# json_to_r(json, simplify, fill_na, buffer_size)
# }
# <bytecode: 0x7f823b9f6830>
# <environment: namespace:jsonify>
noctua:::athena_option_env$bigint
# [1] "numeric"
noctua:::athena_option_env$binary
# [1] "character"
# no conversion for json objects
con2 <- dbConnect(noctua::athena(), json = "character")
# use custom json parser
con <- dbConnect(noctua::athena(), json = jsonify::from_json)
rstudio_conn_tab
within dbConnect
.AWS Athena
uses float
data type for the DDL only, noctua
was wrongly parsing float
data type back to R. Instead AWS Athena
uses data type real
in SQL functions like select cast
https://docs.aws.amazon.com/athena/latest/ug/data-types.html. noctua
now correctly parses real
to R’s data type double
(#133)AWS
returns to get all results from AWS Glue
catalogue (#137)dbGetPartition
. This simply tidies up the default AWS Athena partition format.
library(DBI)
library(noctua)
con <- dbConnect(athena())
dbGetPartition(con, "test_df2", .format = T)
# Info: (Data scanned: 0 Bytes)
# year month day
# 1: 2020 11 17
dbGetPartition(con, "test_df2")
# Info: (Data scanned: 0 Bytes)
# partition
# 1: year=2020/month=11/day=17
bigint
, this is to align with other DBI interfaces i.e. RPostgres
. Now bigint
can be return in the possible formats: [“integer64”, “integer”, “numeric”, “character”]library(DBI)
con <- dbConnect(noctua::athena(), bigint = "numeric")
When switching between the different file parsers the bigint
to be represented according to the file parser i.e. data.table
: “integer64” -> vroom
: “I”.
Error: write_parquet requires the arrow package, please install it first and try again
dbRemoveTable
would error if AWS S3 files for Athena table have been removed:Error in seq.default(1, length(l), 1000) : wrong sign in 'by' argument
Now a warning message will be returned:
Warning message:
Failed to remove AWS S3 files from: "s3://{bucket}/{prefix}/". Please check if AWS S3 files exist.
dbRemoveTable
now removes AWS S3 objects using delete_objects
instead of delete_object
. This allows noctua
to delete AWS S3 files in batches. This will reduce the number of api calls to AWS and comes with a performance improvement.
library(DBI)
library(data.table)
X <- 1010
value <- data.table(x = 1:X,
y = sample(letters, X, replace = T),
z = sample(c(TRUE, FALSE), X, replace = T))
con <- dbConnect(noctua::athena())
# create a removable table with 1010 parquet files in AWS S3.
dbWriteTable(con, "rm_tbl", value, file.type = "parquet", overwrite = T, max.batch = 1)
# old method: delete_object
system.time({dbRemoveTable(con, "rm_tbl", confirm = T)})
# user system elapsed
# 31.004 8.152 115.906
# new method: delete_objects
system.time({dbRemoveTable(con, "rm_tbl", confirm = T)})
# user system elapsed
# 17.319 0.370 22.709
sql_escape_date
into dplyr_integration.R
backend (RAthena: # 121).use_deprecated_int96_timestamps
set to TRUE
. This puts POSIXct data type in to java.sql.Timestamp
compatible format, such as yyyy-MM-dd HH:mm:ss[.f...]
. Thanks to Christian N Wolz for highlight this issue.dbRemoveTable
will ask the user twice to confirm if they wish to remove the backend files:Info: The S3 objects in prefix will be deleted:
s3://bucket/path/schema/table
Info: The S3 objects in prefix will be deleted:
s3://bucket/path/schema/table
To overcome this dbRemoveTable
will opt for paws::s3()$list_objects_v2
instead of paws::s3()$list_objects
when listing s3 objects to be deleted. This allows noctua
to iterate over AWS s3 prefix using tokens, instead of deleting objects in chunks. * s3_upload_location
simplified how s3 location is built. Now s3.location parameter isn’t affected and instead only additional components e.g. name, schema and partition. * dbplyr v-2.0.0
function in_schema
now wraps strings in quotes, this breaks db_query_fields.AthenaConnection
. Now db_query_fields.AthenaConnection
removes any quotation from the string so that it can search AWS GLUE
for table metadata. (#117)
start_query_execution
parameter ClientRequestToken
. This so that the ClientRequestToken
is “A unique case-sensitive string used to ensure the request to create the query is idempotent (executes only once).” (#104)R
has been interrupt a new parameter has been added to dbConnect
, keyboard_interrupt
. Example:
# Stop AWS Athena when R has been interrupted:
con <- dbConnect(noctua::athena())
# Let AWS Athena keep running when R has been interrupted:
con <- dbConnect(noctua::athena(),
keyboard_interrupt = F)
noctua
would return a data.frame
for utility SQL
queries regardless of backend file parser. This is due to AWS Athena
outputting SQL UTILITY
queries as a text file that required to be read in line by line. Now noctua
will return the correct data format based on file parser set in noctua_options
for example: noctua_options("vroom")
will return tibbles
.dbClearResult
when user doesn’t have permission to delete AWS S3 objects (#96)noctua_options
contains 2 new parameters to control how noctua
handles retries.dbFetch
is able to return data from AWS Athena in chunk. This has been achieved by passing NextToken
to AthenaResult
s4 class. This method won’t be as fast n = -1
as each chunk will have to be process into data frame format.
library(DBI)
con <- dbConnect(noctua::athena())
res <- dbExecute(con, "select * from some_big_table limit 10000")
dbFetch(res, 5000)
dbWriteTable
opts to use alter table
instead of standard msck repair table
. This is to improve performance when appending to tables with high number of existing partitions.dbWriteTable
now allows json to be appended to json ddls created with the Openx-JsonSerDe library.dbConvertTable
brings dplyr::compute
functionality to base package, allowing noctua
to use the power of AWS Athena to convert tables and queries to more efficient file formats in AWS S3 (RAthena: # 37).dplyr::compute
to give same functionality of dbConvertTable
region_name
check before making a connection to AWS Athena (RAthena: # 110)dbWriteTable
would throw throttling error
every now and again, retry_api_call
as been built to handle the parsing of data between R and AWS S3.dbWriteTable
did not clear down all metadata when uploading to AWS Athena
dbWriteTable
added support ddl structures for user who have created ddl’s outside of noctua
noctua
retry functionality\dontrun
(#91)pyathena
, noctua_options
now has a new parameter cache_size
. This implements local caching in R environments instead of using AWS list_query_executions
. This is down to dbClearResult
clearing S3’s Athena output when caching isn’t disablednoctua_options
now has clear_cache
parameter to clear down all cached data.dbRemoveTable
now utilise AWS Glue
to remove tables from AWS Glue
catalog. This has a performance enhancement:
library(DBI)
con = dbConnect(noctua::athena())
# upload iris dataframe for removal test
dbWriteTable(con, "iris2", iris)
# Athena method
system.time(dbRemoveTable(con, "iris2", confirm = T))
# user system elapsed
# 0.247 0.091 2.243
# upload iris dataframe for removal test
dbWriteTable(con, "iris2", iris)
# Glue method
system.time(dbRemoveTable(con, "iris2", confirm = T))
# user system elapsed
# 0.110 0.045 1.094
dbWriteTable
now supports uploading json lines (http://jsonlines.org/) format up to AWS Athena
(#88).
library(DBI)
con = dbConnect(noctua::athena())
dbWriteTable(con, "iris2", iris, file.type = "json")
dbGetQuery(con, "select * from iris2")
dbConnect
didn’t correct pass .internal
metadata for paws objects.computeHostName
& computeDisplayName
now get region name from info
object from dbConnect
S4 class.dbWriteTable
appending to existing table compress file type was incorrectly return.Rstudio connection tab
comes into an issue when Glue Table isn’t stored correctly (RAthena: # 92)writeBin
: Only 2^31 - 1 bytes can be written in a single call (and that is the maximum capacity of a raw vector on 32-bit platforms). This means that it will error out with large raw connections. To over come this writeBin
can be called in chunks. If readr
is available on system then readr::write_file
is used for extra speed.
library(readr)
library(microbenchmark)
# creating some dummy data for testing
X <- 1e8
df <-
data.frame(
w = runif(X),
x = 1:X,
y = sample(letters, X, replace = T),
z = sample(c(TRUE, FALSE), X, replace = T))
write_csv(df, "test.csv")
# read in text file into raw format
obj <- readBin("test.csv", what = "raw", n = file.size("test.csv"))
format(object.size(obj), units = "auto")
# 3.3 Gb
# writeBin in a loop
write_bin <- function(
value,
filename,
chunk_size = 2L ^ 20L) {
total_size <- length(value)
split_vec <- seq(1, total_size, chunk_size)
con <- file(filename, "a+b")
on.exit(close(con))
sapply(split_vec, function(x){writeBin(value[x:min(total_size,(x+chunk_size-1))],con)})
invisible(TRUE)
}
microbenchmark(writeBin_loop = write_bin(obj, tempfile()),
readr = write_file(obj, tempfile()),
times = 5)
# Unit: seconds
# expr min lq mean median uq max neval
# R_loop 41.463273 41.62077 42.265778 41.908908 42.022042 44.313893 5
# readr 2.291571 2.40495 2.496871 2.542544 2.558367 2.686921 5
sql_translate_env
(RAthena: # 44)
# Before
translate_sql("2019-01-01", con = con)
# '2019-01-01'
# Now
translate_sql("2019-01-01", con = con)
# DATE '2019-01-01'
fwrite
(>=1.12.4) https://github.com/Rdatatable/data.table/blob/master/NEWS.md
paste
/paste0
would use default dplyr:sql-translate-env
(concat_ws
). paste0
now uses Presto’s concat
function and paste
now uses pipes to get extra flexibility for custom separating values.
# R code:
paste("hi", "bye", sep = "-")
# SQL translation:
('hi'||'-'||'bye')
append
set to TRUE
then existing s3.location will be utilised (RAthena: # 73)db_compute
returned table name, however when a user wished to write table to another location (RAthena: # 74). An error would be raised: Error: SYNTAX_ERROR: line 2:6: Table awsdatacatalog.default.temp.iris does not exist
This has now been fixed with db_compute returning dbplyr::in_schema
.
library(DBI)
library(dplyr)
con <- dbConnect(noctua::athena())
tbl(con, "iris") %>%
compute(name = "temp.iris")
dbListFields
didn’t display partitioned columns. This has now been fixed with the call to AWS Glue being altered to include more metadata allowing for column names and partitions to be returned.dbListFields
dbStatistics
is a wrapper around paws
get_query_execution
to return statistics for noctua::dbSendQuery
resultsdbGetQuery
has new parameter statistics
to print out dbStatistics
before returning Athena results.noctua_options
vroom
has been restricted to >= 1.2.0 due to integer64 support and changes to vroom
apidplyr::tbl
when calling Athena when using the ident method (#64):
library(DBI)
library(dplyr)
con <- dbConnect(noctua::athena())
# ident method:
t1 <- system.time(tbl(con, "iris"))
# sub query method:
t2 <- system.time(tbl(con, sql("select * from iris")))
# ident method
# user system elapsed
# 0.082 0.012 0.288
# sub query method
# user system elapsed
# 0.993 0.138 3.660
data.table
to vroom
. From now on it is possible to change file parser using noctua_options
for example:
library(noctua)
noctua_options("vroom")
dbGetTables
that returns Athena hierarchy as a data.framedbWriteTable
append
parameter checks and uses existing AWS Athena DDL file type. If file.type
doesn’t match Athena DDL file type then user will receive a warning message:
warning('Appended `file.type` is not compatible with the existing Athena DDL file type and has been converted to "', File.Type,'".', call. = FALSE)
INTEGER
being incorrectly translated in sql_translate_env.R
as.character
was getting wrongly translated (RAthena: # 45)data-transfer
dbRemoveTable
new parameters are added in unit testsql_translate_env
until test to cater bug fixdbRemoveTable
can now remove S3 files for AWS Athena table being removed.tolower
conversion due to request (RAthena: # 41)dbWriteTable
now will split gzip
compressed files to improve AWS Athena performance. By default gzip
compressed files will be split into 20.Performance results
library(DBI)
X <- 1e8
df <- data.frame(w =runif(X),
x = 1:X,
y = sample(letters, X, replace = T),
z = sample(c(TRUE, FALSE), X, replace = T))
con <- dbConnect(noctua::athena())
# upload dataframe with different splits
dbWriteTable(con, "test_split1", df, compress = T, max.batch = nrow(df), overwrite = T) # no splits
dbWriteTable(con, "test_split2", df, compress = T, max.batch = 0.05 * nrow(df), overwrite = T) # 20 splits
dbWriteTable(con, "test_split3", df, compress = T, max.batch = 0.1 * nrow(df), overwrite = T) # 10 splits
AWS Athena performance results from AWS console (query executed: select count(*) from ....
):
library(DBI)
X <- 1e8
df <- data.frame(w =runif(X),
x = 1:X,
y = sample(letters, X, replace = T),
z = sample(c(TRUE, FALSE), X, replace = T))
con <- dbConnect(noctua::athena())
dbWriteTable(con, "test_split1", df, compress = T, overwrite = T) # default will now split compressed file into 20 equal size files.
Added information message to inform user about what files have been added to S3 location if user is overwriting an Athena table.
dbWriteTable
POSIXct
to Athena. This class was convert incorrectly and AWS Athena would return NA instead. noctua
will now correctly convert POSIXct
to timestamp but will also correct read in timestamp into POSIXct
NA
in string format. Before noctua
would return NA
in string class as ""
this has now been fixed.noctua
would translate output into a vector with current the method dbFetch
n = 0.sql_translate_env
. Previously noctua
would take the default dplyr::sql_translate_env
, now noctua
has a custom method that uses Data types from: https://docs.aws.amazon.com/athena/latest/ug/data-types.html and window functions from: https://docs.aws.amazon.com/athena/latest/ug/functions-operators-reference-section.html
upload_data
has been rebuilt and removed the old “horrible” if statement with paste
now the function relies on sprintf
to construct the s3 location path. This method now is a lot clearer in how the s3 location is created plus it enables a dbWriteTable
to be simplified. dbWriteTable
can now upload data to the default s3_staging directory created in dbConnect
this simplifies dbWriteTable
to :
library(DBI)
con <- dbConnect(noctua::athena())
dbWriteTable(con, "iris", iris)
config = list()
parameter is paws
objectsBigInt
are now passed correctly into integer64
AthenaResult
returned: Error in call[[2]] : object of type 'closure' is not subsettable
. The function do.call
was causing the issue, to address this do.call
has been removed and the helper function request
has been broken down into ResultConfiguration
to return a single component of start_query_execution
do.call
have been broken down due to error: Error in call[[2]] : object of type 'closure' is not subsettable
data.table
is now used as the default file parser data.table::fread
/ data.table::fwrite
. This isn’t a breaking change as data.table
was used before however this change makes data.table
to default file parser.