Get Usage Forecast
| costexplorer_get_usage_forecast | R Documentation |
Retrieves a forecast for how much Amazon Web Services predicts that you will use over the forecast time period that you select, based on your past usage¶
Description¶
Retrieves a forecast for how much Amazon Web Services predicts that you will use over the forecast time period that you select, based on your past usage.
Usage¶
Arguments¶
TimePeriod[required] The start and end dates of the period that you want to retrieve usage forecast for. The start date is included in the period, but the end date isn't included in the period. For example, if
startis2017-01-01andendis2017-05-01, then the cost and usage data is retrieved from2017-01-01up to and including2017-04-30but not including2017-05-01. The start date must be equal to or later than the current date to avoid a validation error.Metric[required] Which metric Cost Explorer uses to create your forecast.
Valid values for a
get_usage_forecastcall are the following:USAGE_QUANTITY
NORMALIZED_USAGE_AMOUNT
Granularity[required] How granular you want the forecast to be. You can get 3 months of
DAILYforecasts or 12 months ofMONTHLYforecasts.The
get_usage_forecastoperation supports onlyDAILYandMONTHLYgranularities.FilterThe filters that you want to use to filter your forecast. The
get_usage_forecastAPI supports filtering by the following dimensions:AZINSTANCE_TYPELINKED_ACCOUNTLINKED_ACCOUNT_NAMEOPERATIONPURCHASE_TYPEREGIONSERVICEUSAGE_TYPEUSAGE_TYPE_GROUPRECORD_TYPEOPERATING_SYSTEMTENANCYSCOPEPLATFORMSUBSCRIPTION_IDLEGAL_ENTITY_NAMEDEPLOYMENT_OPTIONDATABASE_ENGINEINSTANCE_TYPE_FAMILYBILLING_ENTITYRESERVATION_IDSAVINGS_PLAN_ARN
PredictionIntervalLevelAmazon Web Services Cost Explorer always returns the mean forecast as a single point. You can request a prediction interval around the mean by specifying a confidence level. The higher the confidence level, the more confident Cost Explorer is about the actual value falling in the prediction interval. Higher confidence levels result in wider prediction intervals.
Value¶
A list with the following syntax:
list(
Total = list(
Amount = "string",
Unit = "string"
),
ForecastResultsByTime = list(
list(
TimePeriod = list(
Start = "string",
End = "string"
),
MeanValue = "string",
PredictionIntervalLowerBound = "string",
PredictionIntervalUpperBound = "string"
)
)
)
Request syntax¶
svc$get_usage_forecast(
TimePeriod = list(
Start = "string",
End = "string"
),
Metric = "BLENDED_COST"|"UNBLENDED_COST"|"AMORTIZED_COST"|"NET_UNBLENDED_COST"|"NET_AMORTIZED_COST"|"USAGE_QUANTITY"|"NORMALIZED_USAGE_AMOUNT",
Granularity = "DAILY"|"MONTHLY"|"HOURLY",
Filter = list(
Or = list(
list()
),
And = list(
list()
),
Not = list(),
Dimensions = list(
Key = "AZ"|"INSTANCE_TYPE"|"LINKED_ACCOUNT"|"LINKED_ACCOUNT_NAME"|"OPERATION"|"PURCHASE_TYPE"|"REGION"|"SERVICE"|"SERVICE_CODE"|"USAGE_TYPE"|"USAGE_TYPE_GROUP"|"RECORD_TYPE"|"OPERATING_SYSTEM"|"TENANCY"|"SCOPE"|"PLATFORM"|"SUBSCRIPTION_ID"|"LEGAL_ENTITY_NAME"|"DEPLOYMENT_OPTION"|"DATABASE_ENGINE"|"CACHE_ENGINE"|"INSTANCE_TYPE_FAMILY"|"BILLING_ENTITY"|"RESERVATION_ID"|"RESOURCE_ID"|"RIGHTSIZING_TYPE"|"SAVINGS_PLANS_TYPE"|"SAVINGS_PLAN_ARN"|"PAYMENT_OPTION"|"AGREEMENT_END_DATE_TIME_AFTER"|"AGREEMENT_END_DATE_TIME_BEFORE"|"INVOICING_ENTITY"|"ANOMALY_TOTAL_IMPACT_ABSOLUTE"|"ANOMALY_TOTAL_IMPACT_PERCENTAGE",
Values = list(
"string"
),
MatchOptions = list(
"EQUALS"|"ABSENT"|"STARTS_WITH"|"ENDS_WITH"|"CONTAINS"|"CASE_SENSITIVE"|"CASE_INSENSITIVE"|"GREATER_THAN_OR_EQUAL"
)
),
Tags = list(
Key = "string",
Values = list(
"string"
),
MatchOptions = list(
"EQUALS"|"ABSENT"|"STARTS_WITH"|"ENDS_WITH"|"CONTAINS"|"CASE_SENSITIVE"|"CASE_INSENSITIVE"|"GREATER_THAN_OR_EQUAL"
)
),
CostCategories = list(
Key = "string",
Values = list(
"string"
),
MatchOptions = list(
"EQUALS"|"ABSENT"|"STARTS_WITH"|"ENDS_WITH"|"CONTAINS"|"CASE_SENSITIVE"|"CASE_INSENSITIVE"|"GREATER_THAN_OR_EQUAL"
)
)
),
PredictionIntervalLevel = 123
)