Describe Anomaly Detectors
| cloudwatch_describe_anomaly_detectors | R Documentation |
Lists the anomaly detection models that you have created in your account¶
Description¶
Lists the anomaly detection models that you have created in your
account. For single metric anomaly detectors, you can list all of the
models in your account or filter the results to only the models that are
related to a certain namespace, metric name, or metric dimension. For
metric math anomaly detectors, you can list them by adding METRIC_MATH
to the AnomalyDetectorTypes array. This will return all metric math
anomaly detectors in your account.
Usage¶
cloudwatch_describe_anomaly_detectors(NextToken, MaxResults, Namespace,
MetricName, Dimensions, AnomalyDetectorTypes)
Arguments¶
NextTokenUse the token returned by the previous operation to request the next page of results.
MaxResultsThe maximum number of results to return in one operation. The maximum value that you can specify is 100.
To retrieve the remaining results, make another call with the returned
NextTokenvalue.NamespaceLimits the results to only the anomaly detection models that are associated with the specified namespace.
MetricNameLimits the results to only the anomaly detection models that are associated with the specified metric name. If there are multiple metrics with this name in different namespaces that have anomaly detection models, they're all returned.
DimensionsLimits the results to only the anomaly detection models that are associated with the specified metric dimensions. If there are multiple metrics that have these dimensions and have anomaly detection models associated, they're all returned.
AnomalyDetectorTypesThe anomaly detector types to request when using
DescribeAnomalyDetectorsInput. If empty, defaults toSINGLE_METRIC.
Value¶
A list with the following syntax:
list(
AnomalyDetectors = list(
list(
Namespace = "string",
MetricName = "string",
Dimensions = list(
list(
Name = "string",
Value = "string"
)
),
Stat = "string",
Configuration = list(
ExcludedTimeRanges = list(
list(
StartTime = as.POSIXct(
"2015-01-01"
),
EndTime = as.POSIXct(
"2015-01-01"
)
)
),
MetricTimezone = "string"
),
StateValue = "PENDING_TRAINING"|"TRAINED_INSUFFICIENT_DATA"|"TRAINED",
MetricCharacteristics = list(
PeriodicSpikes = TRUE|FALSE
),
SingleMetricAnomalyDetector = list(
AccountId = "string",
Namespace = "string",
MetricName = "string",
Dimensions = list(
list(
Name = "string",
Value = "string"
)
),
Stat = "string"
),
MetricMathAnomalyDetector = list(
MetricDataQueries = list(
list(
Id = "string",
MetricStat = list(
Metric = list(
Namespace = "string",
MetricName = "string",
Dimensions = list(
list(
Name = "string",
Value = "string"
)
)
),
Period = 123,
Stat = "string",
Unit = "Seconds"|"Microseconds"|"Milliseconds"|"Bytes"|"Kilobytes"|"Megabytes"|"Gigabytes"|"Terabytes"|"Bits"|"Kilobits"|"Megabits"|"Gigabits"|"Terabits"|"Percent"|"Count"|"Bytes/Second"|"Kilobytes/Second"|"Megabytes/Second"|"Gigabytes/Second"|"Terabytes/Second"|"Bits/Second"|"Kilobits/Second"|"Megabits/Second"|"Gigabits/Second"|"Terabits/Second"|"Count/Second"|"None"
),
Expression = "string",
Label = "string",
ReturnData = TRUE|FALSE,
Period = 123,
AccountId = "string"
)
)
)
)
),
NextToken = "string"
)