Converse Stream
| bedrockruntime_converse_stream | R Documentation |
Sends messages to the specified Amazon Bedrock model and returns the response in a stream¶
Description¶
Sends messages to the specified Amazon Bedrock model and returns the
response in a stream. converse_stream provides a consistent API that
works with all Amazon Bedrock models that support messages. This allows
you to write code once and use it with different models. Should a model
have unique inference parameters, you can also pass those unique
parameters to the model.
To find out if a model supports streaming, call
GetFoundationModel
and check the responseStreamingSupported field in the response.
The CLI doesn't support streaming operations in Amazon Bedrock,
including converse_stream.
Amazon Bedrock doesn't store any text, images, or documents that you provide as content. The data is only used to generate the response.
For information about the Converse API, see Use the Converse API in the Amazon Bedrock User Guide. To use a guardrail, see Use a guardrail with the Converse API in the Amazon Bedrock User Guide. To use a tool with a model, see Tool use (Function calling) in the Amazon Bedrock User Guide
For example code, see Conversation streaming example in the Amazon Bedrock User Guide.
This operation requires permission for the
bedrock:InvokeModelWithResponseStream action.
Usage¶
bedrockruntime_converse_stream(modelId, messages, system,
inferenceConfig, toolConfig, guardrailConfig,
additionalModelRequestFields, additionalModelResponseFieldPaths)
Arguments¶
modelId[required] The ID for the model.
The
modelIdto provide depends on the type of model or throughput that you use:If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide.
If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see Supported Regions and models for cross-region inference in the Amazon Bedrock User Guide.
If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide.
If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
The Converse API doesn't support imported models.
messages[required] The messages that you want to send to the model.
systemA system prompt to send to the model.
inferenceConfigInference parameters to pass to the model.
converse_streamsupports a base set of inference parameters. If you need to pass additional parameters that the model supports, use theadditionalModelRequestFieldsrequest field.toolConfigConfiguration information for the tools that the model can use when generating a response.
This field is only supported by Anthropic Claude 3 models.
guardrailConfigConfiguration information for a guardrail that you want to use in the request.
additionalModelRequestFieldsAdditional inference parameters that the model supports, beyond the base set of inference parameters that
converse_streamsupports in theinferenceConfigfield.additionalModelResponseFieldPathsAdditional model parameters field paths to return in the response.
converse_streamreturns the requested fields as a JSON Pointer object in theadditionalModelResponseFieldsfield. The following is example JSON foradditionalModelResponseFieldPaths.[ "/stop_sequence" ]For information about the JSON Pointer syntax, see the Internet Engineering Task Force (IETF) documentation.
converse_streamrejects an empty JSON Pointer or incorrectly structured JSON Pointer with a400error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored byconverse_stream.
Value¶
A list with the following syntax:
list(
stream = list(
messageStart = list(
role = "user"|"assistant"
),
contentBlockStart = list(
start = list(
toolUse = list(
toolUseId = "string",
name = "string"
)
),
contentBlockIndex = 123
),
contentBlockDelta = list(
delta = list(
text = "string",
toolUse = list(
input = "string"
)
),
contentBlockIndex = 123
),
contentBlockStop = list(
contentBlockIndex = 123
),
messageStop = list(
stopReason = "end_turn"|"tool_use"|"max_tokens"|"stop_sequence"|"guardrail_intervened"|"content_filtered",
additionalModelResponseFields = list()
),
metadata = list(
usage = list(
inputTokens = 123,
outputTokens = 123,
totalTokens = 123
),
metrics = list(
latencyMs = 123
),
trace = list(
guardrail = list(
modelOutput = list(
"string"
),
inputAssessment = list(
list(
topicPolicy = list(
topics = list(
list(
name = "string",
type = "DENY",
action = "BLOCKED"
)
)
),
contentPolicy = list(
filters = list(
list(
type = "INSULTS"|"HATE"|"SEXUAL"|"VIOLENCE"|"MISCONDUCT"|"PROMPT_ATTACK",
confidence = "NONE"|"LOW"|"MEDIUM"|"HIGH",
action = "BLOCKED"
)
)
),
wordPolicy = list(
customWords = list(
list(
match = "string",
action = "BLOCKED"
)
),
managedWordLists = list(
list(
match = "string",
type = "PROFANITY",
action = "BLOCKED"
)
)
),
sensitiveInformationPolicy = list(
piiEntities = list(
list(
match = "string",
type = "ADDRESS"|"AGE"|"AWS_ACCESS_KEY"|"AWS_SECRET_KEY"|"CA_HEALTH_NUMBER"|"CA_SOCIAL_INSURANCE_NUMBER"|"CREDIT_DEBIT_CARD_CVV"|"CREDIT_DEBIT_CARD_EXPIRY"|"CREDIT_DEBIT_CARD_NUMBER"|"DRIVER_ID"|"EMAIL"|"INTERNATIONAL_BANK_ACCOUNT_NUMBER"|"IP_ADDRESS"|"LICENSE_PLATE"|"MAC_ADDRESS"|"NAME"|"PASSWORD"|"PHONE"|"PIN"|"SWIFT_CODE"|"UK_NATIONAL_HEALTH_SERVICE_NUMBER"|"UK_NATIONAL_INSURANCE_NUMBER"|"UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER"|"URL"|"USERNAME"|"US_BANK_ACCOUNT_NUMBER"|"US_BANK_ROUTING_NUMBER"|"US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER"|"US_PASSPORT_NUMBER"|"US_SOCIAL_SECURITY_NUMBER"|"VEHICLE_IDENTIFICATION_NUMBER",
action = "ANONYMIZED"|"BLOCKED"
)
),
regexes = list(
list(
name = "string",
match = "string",
regex = "string",
action = "ANONYMIZED"|"BLOCKED"
)
)
),
contextualGroundingPolicy = list(
filters = list(
list(
type = "GROUNDING"|"RELEVANCE",
threshold = 123.0,
score = 123.0,
action = "BLOCKED"|"NONE"
)
)
)
)
),
outputAssessments = list(
list(
list(
topicPolicy = list(
topics = list(
list(
name = "string",
type = "DENY",
action = "BLOCKED"
)
)
),
contentPolicy = list(
filters = list(
list(
type = "INSULTS"|"HATE"|"SEXUAL"|"VIOLENCE"|"MISCONDUCT"|"PROMPT_ATTACK",
confidence = "NONE"|"LOW"|"MEDIUM"|"HIGH",
action = "BLOCKED"
)
)
),
wordPolicy = list(
customWords = list(
list(
match = "string",
action = "BLOCKED"
)
),
managedWordLists = list(
list(
match = "string",
type = "PROFANITY",
action = "BLOCKED"
)
)
),
sensitiveInformationPolicy = list(
piiEntities = list(
list(
match = "string",
type = "ADDRESS"|"AGE"|"AWS_ACCESS_KEY"|"AWS_SECRET_KEY"|"CA_HEALTH_NUMBER"|"CA_SOCIAL_INSURANCE_NUMBER"|"CREDIT_DEBIT_CARD_CVV"|"CREDIT_DEBIT_CARD_EXPIRY"|"CREDIT_DEBIT_CARD_NUMBER"|"DRIVER_ID"|"EMAIL"|"INTERNATIONAL_BANK_ACCOUNT_NUMBER"|"IP_ADDRESS"|"LICENSE_PLATE"|"MAC_ADDRESS"|"NAME"|"PASSWORD"|"PHONE"|"PIN"|"SWIFT_CODE"|"UK_NATIONAL_HEALTH_SERVICE_NUMBER"|"UK_NATIONAL_INSURANCE_NUMBER"|"UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER"|"URL"|"USERNAME"|"US_BANK_ACCOUNT_NUMBER"|"US_BANK_ROUTING_NUMBER"|"US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER"|"US_PASSPORT_NUMBER"|"US_SOCIAL_SECURITY_NUMBER"|"VEHICLE_IDENTIFICATION_NUMBER",
action = "ANONYMIZED"|"BLOCKED"
)
),
regexes = list(
list(
name = "string",
match = "string",
regex = "string",
action = "ANONYMIZED"|"BLOCKED"
)
)
),
contextualGroundingPolicy = list(
filters = list(
list(
type = "GROUNDING"|"RELEVANCE",
threshold = 123.0,
score = 123.0,
action = "BLOCKED"|"NONE"
)
)
)
)
)
)
)
)
),
internalServerException = list(
message = "string"
),
modelStreamErrorException = list(
message = "string",
originalStatusCode = 123,
originalMessage = "string"
),
validationException = list(
message = "string"
),
throttlingException = list(
message = "string"
),
serviceUnavailableException = list(
message = "string"
)
)
)
Request syntax¶
svc$converse_stream(
modelId = "string",
messages = list(
list(
role = "user"|"assistant",
content = list(
list(
text = "string",
image = list(
format = "png"|"jpeg"|"gif"|"webp",
source = list(
bytes = raw
)
),
document = list(
format = "pdf"|"csv"|"doc"|"docx"|"xls"|"xlsx"|"html"|"txt"|"md",
name = "string",
source = list(
bytes = raw
)
),
toolUse = list(
toolUseId = "string",
name = "string",
input = list()
),
toolResult = list(
toolUseId = "string",
content = list(
list(
json = list(),
text = "string",
image = list(
format = "png"|"jpeg"|"gif"|"webp",
source = list(
bytes = raw
)
),
document = list(
format = "pdf"|"csv"|"doc"|"docx"|"xls"|"xlsx"|"html"|"txt"|"md",
name = "string",
source = list(
bytes = raw
)
)
)
),
status = "success"|"error"
),
guardContent = list(
text = list(
text = "string",
qualifiers = list(
"grounding_source"|"query"|"guard_content"
)
)
)
)
)
)
),
system = list(
list(
text = "string",
guardContent = list(
text = list(
text = "string",
qualifiers = list(
"grounding_source"|"query"|"guard_content"
)
)
)
)
),
inferenceConfig = list(
maxTokens = 123,
temperature = 123.0,
topP = 123.0,
stopSequences = list(
"string"
)
),
toolConfig = list(
tools = list(
list(
toolSpec = list(
name = "string",
description = "string",
inputSchema = list(
json = list()
)
)
)
),
toolChoice = list(
auto = list(),
any = list(),
tool = list(
name = "string"
)
)
),
guardrailConfig = list(
guardrailIdentifier = "string",
guardrailVersion = "string",
trace = "enabled"|"disabled",
streamProcessingMode = "sync"|"async"
),
additionalModelRequestFields = list(),
additionalModelResponseFieldPaths = list(
"string"
)
)