Skip to content

Describe Auto Ml Job V2

sagemaker_describe_auto_ml_job_v2 R Documentation

Returns information about an AutoML job created by calling CreateAutoMLJobV2 or CreateAutoMLJob

Description

Returns information about an AutoML job created by calling create_auto_ml_job_v2 or create_auto_ml_job.

Usage

sagemaker_describe_auto_ml_job_v2(AutoMLJobName)

Arguments

AutoMLJobName

[required] Requests information about an AutoML job V2 using its unique name.

Value

A list with the following syntax:

list(
  AutoMLJobName = "string",
  AutoMLJobArn = "string",
  AutoMLJobInputDataConfig = list(
    list(
      ChannelType = "training"|"validation",
      ContentType = "string",
      CompressionType = "None"|"Gzip",
      DataSource = list(
        S3DataSource = list(
          S3DataType = "ManifestFile"|"S3Prefix"|"AugmentedManifestFile",
          S3Uri = "string"
        )
      )
    )
  ),
  OutputDataConfig = list(
    KmsKeyId = "string",
    S3OutputPath = "string"
  ),
  RoleArn = "string",
  AutoMLJobObjective = list(
    MetricName = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"BalancedAccuracy"|"R2"|"Recall"|"RecallMacro"|"Precision"|"PrecisionMacro"|"MAE"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"
  ),
  AutoMLProblemTypeConfig = list(
    ImageClassificationJobConfig = list(
      CompletionCriteria = list(
        MaxCandidates = 123,
        MaxRuntimePerTrainingJobInSeconds = 123,
        MaxAutoMLJobRuntimeInSeconds = 123
      )
    ),
    TextClassificationJobConfig = list(
      CompletionCriteria = list(
        MaxCandidates = 123,
        MaxRuntimePerTrainingJobInSeconds = 123,
        MaxAutoMLJobRuntimeInSeconds = 123
      ),
      ContentColumn = "string",
      TargetLabelColumn = "string"
    ),
    TimeSeriesForecastingJobConfig = list(
      FeatureSpecificationS3Uri = "string",
      CompletionCriteria = list(
        MaxCandidates = 123,
        MaxRuntimePerTrainingJobInSeconds = 123,
        MaxAutoMLJobRuntimeInSeconds = 123
      ),
      ForecastFrequency = "string",
      ForecastHorizon = 123,
      ForecastQuantiles = list(
        "string"
      ),
      Transformations = list(
        Filling = list(
          list(
            "string"
          )
        ),
        Aggregation = list(
          "sum"|"avg"|"first"|"min"|"max"
        )
      ),
      TimeSeriesConfig = list(
        TargetAttributeName = "string",
        TimestampAttributeName = "string",
        ItemIdentifierAttributeName = "string",
        GroupingAttributeNames = list(
          "string"
        )
      ),
      HolidayConfig = list(
        list(
          CountryCode = "string"
        )
      ),
      CandidateGenerationConfig = list(
        AlgorithmsConfig = list(
          list(
            AutoMLAlgorithms = list(
              "xgboost"|"linear-learner"|"mlp"|"lightgbm"|"catboost"|"randomforest"|"extra-trees"|"nn-torch"|"fastai"|"cnn-qr"|"deepar"|"prophet"|"npts"|"arima"|"ets"
            )
          )
        )
      )
    ),
    TabularJobConfig = list(
      CandidateGenerationConfig = list(
        AlgorithmsConfig = list(
          list(
            AutoMLAlgorithms = list(
              "xgboost"|"linear-learner"|"mlp"|"lightgbm"|"catboost"|"randomforest"|"extra-trees"|"nn-torch"|"fastai"|"cnn-qr"|"deepar"|"prophet"|"npts"|"arima"|"ets"
            )
          )
        )
      ),
      CompletionCriteria = list(
        MaxCandidates = 123,
        MaxRuntimePerTrainingJobInSeconds = 123,
        MaxAutoMLJobRuntimeInSeconds = 123
      ),
      FeatureSpecificationS3Uri = "string",
      Mode = "AUTO"|"ENSEMBLING"|"HYPERPARAMETER_TUNING",
      GenerateCandidateDefinitionsOnly = TRUE|FALSE,
      ProblemType = "BinaryClassification"|"MulticlassClassification"|"Regression",
      TargetAttributeName = "string",
      SampleWeightAttributeName = "string"
    ),
    TextGenerationJobConfig = list(
      CompletionCriteria = list(
        MaxCandidates = 123,
        MaxRuntimePerTrainingJobInSeconds = 123,
        MaxAutoMLJobRuntimeInSeconds = 123
      ),
      BaseModelName = "string",
      TextGenerationHyperParameters = list(
        "string"
      ),
      ModelAccessConfig = list(
        AcceptEula = TRUE|FALSE
      )
    )
  ),
  AutoMLProblemTypeConfigName = "ImageClassification"|"TextClassification"|"TimeSeriesForecasting"|"Tabular"|"TextGeneration",
  CreationTime = as.POSIXct(
    "2015-01-01"
  ),
  EndTime = as.POSIXct(
    "2015-01-01"
  ),
  LastModifiedTime = as.POSIXct(
    "2015-01-01"
  ),
  FailureReason = "string",
  PartialFailureReasons = list(
    list(
      PartialFailureMessage = "string"
    )
  ),
  BestCandidate = list(
    CandidateName = "string",
    FinalAutoMLJobObjectiveMetric = list(
      Type = "Maximize"|"Minimize",
      MetricName = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"BalancedAccuracy"|"R2"|"Recall"|"RecallMacro"|"Precision"|"PrecisionMacro"|"MAE"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss",
      Value = 123.0,
      StandardMetricName = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"BalancedAccuracy"|"R2"|"Recall"|"RecallMacro"|"Precision"|"PrecisionMacro"|"MAE"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"
    ),
    ObjectiveStatus = "Succeeded"|"Pending"|"Failed",
    CandidateSteps = list(
      list(
        CandidateStepType = "AWS::SageMaker::TrainingJob"|"AWS::SageMaker::TransformJob"|"AWS::SageMaker::ProcessingJob",
        CandidateStepArn = "string",
        CandidateStepName = "string"
      )
    ),
    CandidateStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping",
    InferenceContainers = list(
      list(
        Image = "string",
        ModelDataUrl = "string",
        Environment = list(
          "string"
        )
      )
    ),
    CreationTime = as.POSIXct(
      "2015-01-01"
    ),
    EndTime = as.POSIXct(
      "2015-01-01"
    ),
    LastModifiedTime = as.POSIXct(
      "2015-01-01"
    ),
    FailureReason = "string",
    CandidateProperties = list(
      CandidateArtifactLocations = list(
        Explainability = "string",
        ModelInsights = "string",
        BacktestResults = "string"
      ),
      CandidateMetrics = list(
        list(
          MetricName = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"BalancedAccuracy"|"R2"|"Recall"|"RecallMacro"|"Precision"|"PrecisionMacro"|"MAE"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss",
          Value = 123.0,
          Set = "Train"|"Validation"|"Test",
          StandardMetricName = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"LogLoss"|"InferenceLatency"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"|"Rouge1"|"Rouge2"|"RougeL"|"RougeLSum"|"Perplexity"|"ValidationLoss"|"TrainingLoss"
        )
      )
    ),
    InferenceContainerDefinitions = list(
      list(
        list(
          Image = "string",
          ModelDataUrl = "string",
          Environment = list(
            "string"
          )
        )
      )
    )
  ),
  AutoMLJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping",
  AutoMLJobSecondaryStatus = "Starting"|"MaxCandidatesReached"|"Failed"|"Stopped"|"MaxAutoMLJobRuntimeReached"|"Stopping"|"CandidateDefinitionsGenerated"|"Completed"|"ExplainabilityError"|"DeployingModel"|"ModelDeploymentError"|"GeneratingModelInsightsReport"|"ModelInsightsError"|"AnalyzingData"|"FeatureEngineering"|"ModelTuning"|"GeneratingExplainabilityReport"|"TrainingModels"|"PreTraining",
  AutoMLJobArtifacts = list(
    CandidateDefinitionNotebookLocation = "string",
    DataExplorationNotebookLocation = "string"
  ),
  ResolvedAttributes = list(
    AutoMLJobObjective = list(
      MetricName = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"BalancedAccuracy"|"R2"|"Recall"|"RecallMacro"|"Precision"|"PrecisionMacro"|"MAE"|"MAPE"|"MASE"|"WAPE"|"AverageWeightedQuantileLoss"
    ),
    CompletionCriteria = list(
      MaxCandidates = 123,
      MaxRuntimePerTrainingJobInSeconds = 123,
      MaxAutoMLJobRuntimeInSeconds = 123
    ),
    AutoMLProblemTypeResolvedAttributes = list(
      TabularResolvedAttributes = list(
        ProblemType = "BinaryClassification"|"MulticlassClassification"|"Regression"
      ),
      TextGenerationResolvedAttributes = list(
        BaseModelName = "string"
      )
    )
  ),
  ModelDeployConfig = list(
    AutoGenerateEndpointName = TRUE|FALSE,
    EndpointName = "string"
  ),
  ModelDeployResult = list(
    EndpointName = "string"
  ),
  DataSplitConfig = list(
    ValidationFraction = 123.0
  ),
  SecurityConfig = list(
    VolumeKmsKeyId = "string",
    EnableInterContainerTrafficEncryption = TRUE|FALSE,
    VpcConfig = list(
      SecurityGroupIds = list(
        "string"
      ),
      Subnets = list(
        "string"
      )
    )
  ),
  AutoMLComputeConfig = list(
    EmrServerlessComputeConfig = list(
      ExecutionRoleARN = "string"
    )
  )
)

Request syntax

svc$describe_auto_ml_job_v2(
  AutoMLJobName = "string"
)