Create Inference Experiment
sagemaker_create_inference_experiment | R Documentation |
Creates an inference experiment using the configurations specified in the request¶
Description¶
Creates an inference experiment using the configurations specified in the request.
Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests.
Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration.
While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests.
Usage¶
sagemaker_create_inference_experiment(Name, Type, Schedule, Description,
RoleArn, EndpointName, ModelVariants, DataStorageConfig,
ShadowModeConfig, KmsKey, Tags)
Arguments¶
Name |
[required] The name for the inference experiment. |
Type |
[required] The type of the inference experiment that you want to run. The following types of experiments are possible:
|
Schedule |
The duration for which you want the inference experiment to run. If you don't specify this field, the experiment automatically starts immediately upon creation and concludes after 7 days. |
Description |
A description for the inference experiment. |
RoleArn |
[required] The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment. |
EndpointName |
[required] The name of the Amazon SageMaker endpoint on which you want to run the inference experiment. |
ModelVariants |
[required] An array of |
DataStorageConfig |
The Amazon S3 location and configuration for storing inference request and response data. This is an optional parameter that you can use for data capture. For more information, see Capture data. |
ShadowModeConfig |
[required] The configuration of |
KmsKey |
The Amazon Web Services Key Management Service (Amazon Web
Services KMS) key that Amazon SageMaker uses to encrypt data on the
storage volume attached to the ML compute instance that hosts the
endpoint. The
If you use a KMS key ID or an alias of your KMS key, the Amazon
SageMaker execution role must include permissions to call
The KMS key policy must grant permission to the IAM role that you
specify in your |
Tags |
Array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging your Amazon Web Services Resources. |
Value¶
A list with the following syntax:
list(
InferenceExperimentArn = "string"
)
Request syntax¶
svc$create_inference_experiment(
Name = "string",
Type = "ShadowMode",
Schedule = list(
StartTime = as.POSIXct(
"2015-01-01"
),
EndTime = as.POSIXct(
"2015-01-01"
)
),
Description = "string",
RoleArn = "string",
EndpointName = "string",
ModelVariants = list(
list(
ModelName = "string",
VariantName = "string",
InfrastructureConfig = list(
InfrastructureType = "RealTimeInference",
RealTimeInferenceConfig = list(
InstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.8xlarge"|"ml.m5d.12xlarge"|"ml.m5d.16xlarge"|"ml.m5d.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.8xlarge"|"ml.r5.12xlarge"|"ml.r5.16xlarge"|"ml.r5.24xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.16xlarge"|"ml.g5.12xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge"|"ml.p4d.24xlarge"|"ml.p4de.24xlarge"|"ml.p5.48xlarge"|"ml.m6i.large"|"ml.m6i.xlarge"|"ml.m6i.2xlarge"|"ml.m6i.4xlarge"|"ml.m6i.8xlarge"|"ml.m6i.12xlarge"|"ml.m6i.16xlarge"|"ml.m6i.24xlarge"|"ml.m6i.32xlarge"|"ml.m7i.large"|"ml.m7i.xlarge"|"ml.m7i.2xlarge"|"ml.m7i.4xlarge"|"ml.m7i.8xlarge"|"ml.m7i.12xlarge"|"ml.m7i.16xlarge"|"ml.m7i.24xlarge"|"ml.m7i.48xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.c7i.large"|"ml.c7i.xlarge"|"ml.c7i.2xlarge"|"ml.c7i.4xlarge"|"ml.c7i.8xlarge"|"ml.c7i.12xlarge"|"ml.c7i.16xlarge"|"ml.c7i.24xlarge"|"ml.c7i.48xlarge"|"ml.r6i.large"|"ml.r6i.xlarge"|"ml.r6i.2xlarge"|"ml.r6i.4xlarge"|"ml.r6i.8xlarge"|"ml.r6i.12xlarge"|"ml.r6i.16xlarge"|"ml.r6i.24xlarge"|"ml.r6i.32xlarge"|"ml.r7i.large"|"ml.r7i.xlarge"|"ml.r7i.2xlarge"|"ml.r7i.4xlarge"|"ml.r7i.8xlarge"|"ml.r7i.12xlarge"|"ml.r7i.16xlarge"|"ml.r7i.24xlarge"|"ml.r7i.48xlarge"|"ml.m6id.large"|"ml.m6id.xlarge"|"ml.m6id.2xlarge"|"ml.m6id.4xlarge"|"ml.m6id.8xlarge"|"ml.m6id.12xlarge"|"ml.m6id.16xlarge"|"ml.m6id.24xlarge"|"ml.m6id.32xlarge"|"ml.c6id.large"|"ml.c6id.xlarge"|"ml.c6id.2xlarge"|"ml.c6id.4xlarge"|"ml.c6id.8xlarge"|"ml.c6id.12xlarge"|"ml.c6id.16xlarge"|"ml.c6id.24xlarge"|"ml.c6id.32xlarge"|"ml.r6id.large"|"ml.r6id.xlarge"|"ml.r6id.2xlarge"|"ml.r6id.4xlarge"|"ml.r6id.8xlarge"|"ml.r6id.12xlarge"|"ml.r6id.16xlarge"|"ml.r6id.24xlarge"|"ml.r6id.32xlarge"|"ml.g6.xlarge"|"ml.g6.2xlarge"|"ml.g6.4xlarge"|"ml.g6.8xlarge"|"ml.g6.12xlarge"|"ml.g6.16xlarge"|"ml.g6.24xlarge"|"ml.g6.48xlarge",
InstanceCount = 123
)
)
)
),
DataStorageConfig = list(
Destination = "string",
KmsKey = "string",
ContentType = list(
CsvContentTypes = list(
"string"
),
JsonContentTypes = list(
"string"
)
)
),
ShadowModeConfig = list(
SourceModelVariantName = "string",
ShadowModelVariants = list(
list(
ShadowModelVariantName = "string",
SamplingPercentage = 123
)
)
),
KmsKey = "string",
Tags = list(
list(
Key = "string",
Value = "string"
)
)
)