Create Cluster
sagemaker_create_cluster | R Documentation |
Creates a SageMaker HyperPod cluster¶
Description¶
Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see Amazon SageMaker HyperPod in the Amazon SageMaker Developer Guide.
Usage¶
Arguments¶
ClusterName
[required] The name for the new SageMaker HyperPod cluster.
InstanceGroups
[required] The instance groups to be created in the SageMaker HyperPod cluster.
VpcConfig
Tags
Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.
Orchestrator
The type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is
"eks"
, which is to use an Amazon Elastic Kubernetes Service (EKS) cluster as the orchestrator.NodeRecovery
The node recovery mode for the SageMaker HyperPod cluster. When set to
Automatic
, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set toNone
, cluster administrators will need to manually manage any faulty cluster instances.
Value¶
A list with the following syntax:
Request syntax¶
svc$create_cluster(
ClusterName = "string",
InstanceGroups = list(
list(
InstanceCount = 123,
InstanceGroupName = "string",
InstanceType = "ml.p4d.24xlarge"|"ml.p4de.24xlarge"|"ml.p5.48xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.12xlarge"|"ml.c5.18xlarge"|"ml.c5.24xlarge"|"ml.c5n.large"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.8xlarge"|"ml.m5.12xlarge"|"ml.m5.16xlarge"|"ml.m5.24xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.g6.xlarge"|"ml.g6.2xlarge"|"ml.g6.4xlarge"|"ml.g6.8xlarge"|"ml.g6.16xlarge"|"ml.g6.12xlarge"|"ml.g6.24xlarge"|"ml.g6.48xlarge"|"ml.gr6.4xlarge"|"ml.gr6.8xlarge"|"ml.g6e.xlarge"|"ml.g6e.2xlarge"|"ml.g6e.4xlarge"|"ml.g6e.8xlarge"|"ml.g6e.16xlarge"|"ml.g6e.12xlarge"|"ml.g6e.24xlarge"|"ml.g6e.48xlarge"|"ml.p5e.48xlarge"|"ml.p5en.48xlarge"|"ml.trn2.48xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.m6i.large"|"ml.m6i.xlarge"|"ml.m6i.2xlarge"|"ml.m6i.4xlarge"|"ml.m6i.8xlarge"|"ml.m6i.12xlarge"|"ml.m6i.16xlarge"|"ml.m6i.24xlarge"|"ml.m6i.32xlarge"|"ml.r6i.large"|"ml.r6i.xlarge"|"ml.r6i.2xlarge"|"ml.r6i.4xlarge"|"ml.r6i.8xlarge"|"ml.r6i.12xlarge"|"ml.r6i.16xlarge"|"ml.r6i.24xlarge"|"ml.r6i.32xlarge",
LifeCycleConfig = list(
SourceS3Uri = "string",
OnCreate = "string"
),
ExecutionRole = "string",
ThreadsPerCore = 123,
InstanceStorageConfigs = list(
list(
EbsVolumeConfig = list(
VolumeSizeInGB = 123
)
)
),
OnStartDeepHealthChecks = list(
"InstanceStress"|"InstanceConnectivity"
),
TrainingPlanArn = "string",
OverrideVpcConfig = list(
SecurityGroupIds = list(
"string"
),
Subnets = list(
"string"
)
)
)
),
VpcConfig = list(
SecurityGroupIds = list(
"string"
),
Subnets = list(
"string"
)
),
Tags = list(
list(
Key = "string",
Value = "string"
)
),
Orchestrator = list(
Eks = list(
ClusterArn = "string"
)
),
NodeRecovery = "Automatic"|"None"
)