Create Dataset
personalize_create_dataset | R Documentation |
Creates an empty dataset and adds it to the specified dataset group¶
Description¶
Creates an empty dataset and adds it to the specified dataset group. Use
create_dataset_import_job
to import your training data to a dataset.
There are 5 types of datasets:
-
Item interactions
-
Items
-
Users
-
Action interactions
-
Actions
Each dataset type has an associated schema with required field types.
Only the Item interactions
dataset is required in order to train a
model (also referred to as creating a solution).
A dataset can be in one of the following states:
-
CREATE PENDING \ CREATE IN_PROGRESS \ ACTIVE -or- CREATE FAILED
-
DELETE PENDING \ DELETE IN_PROGRESS
To get the status of the dataset, call describe_dataset
.
Related APIs
-
create_dataset_group
-
list_datasets
-
describe_dataset
-
delete_dataset
Usage¶
personalize_create_dataset(name, schemaArn, datasetGroupArn,
datasetType, tags)
Arguments¶
name |
[required] The name for the dataset. |
schemaArn |
[required] The ARN of the schema to associate with the dataset. The schema defines the dataset fields. |
datasetGroupArn |
[required] The Amazon Resource Name (ARN) of the dataset group to add the dataset to. |
datasetType |
[required] The type of dataset. One of the following (case insensitive) values:
|
tags |
A list of tags to apply to the dataset. |
Value¶
A list with the following syntax:
list(
datasetArn = "string"
)
Request syntax¶
svc$create_dataset(
name = "string",
schemaArn = "string",
datasetGroupArn = "string",
datasetType = "string",
tags = list(
list(
tagKey = "string",
tagValue = "string"
)
)
)