Query
kendra_query | R Documentation |
Searches an index given an input query¶
Description¶
Searches an index given an input query.
If you are working with large language models (LLMs) or implementing
retrieval augmented generation (RAG) systems, you can use Amazon
Kendra's retrieve
API, which can return longer semantically relevant
passages. We recommend using the retrieve
API instead of filing a
service limit increase to increase the query
API document excerpt
length.
You can configure boosting or relevance tuning at the query level to override boosting at the index level, filter based on document fields/attributes and faceted search, and filter based on the user or their group access to documents. You can also include certain fields in the response that might provide useful additional information.
A query response contains three types of results.
-
Relevant suggested answers. The answers can be either a text excerpt or table excerpt. The answer can be highlighted in the excerpt.
-
Matching FAQs or questions-answer from your FAQ file.
-
Relevant documents. This result type includes an excerpt of the document with the document title. The searched terms can be highlighted in the excerpt.
You can specify that the query return only one type of result using the
QueryResultTypeFilter
parameter. Each query returns the 100 most
relevant results. If you filter result type to only question-answers, a
maximum of four results are returned. If you filter result type to only
answers, a maximum of three results are returned.
If you're using an Amazon Kendra Gen AI Enterprise Edition index, you
can only use ATTRIBUTE_FILTER
to filter search results by user
context. If you're using an Amazon Kendra Gen AI Enterprise Edition
index and you try to use USER_TOKEN
to configure user context policy,
Amazon Kendra returns a ValidationException
error.
Usage¶
kendra_query(IndexId, QueryText, AttributeFilter, Facets,
RequestedDocumentAttributes, QueryResultTypeFilter,
DocumentRelevanceOverrideConfigurations, PageNumber, PageSize,
SortingConfiguration, SortingConfigurations, UserContext, VisitorId,
SpellCorrectionConfiguration, CollapseConfiguration)
Arguments¶
IndexId |
[required] The identifier of the index for the search. |
QueryText |
The input query text for the search. Amazon Kendra truncates
queries at 30 token words, which excludes punctuation and stop words.
Truncation still applies if you use Boolean or more advanced, complex
queries. For example, |
AttributeFilter |
Filters search results by document fields/attributes. You can
only provide one attribute filter; however, the
The For Amazon Kendra Gen AI Enterprise Edition indices use
|
Facets |
An array of documents fields/attributes for faceted search. Amazon Kendra returns a count for each field key specified. This helps your users narrow their search. |
RequestedDocumentAttributes |
An array of document fields/attributes to include in the response. You can limit the response to include certain document fields. By default, all document attributes are included in the response. |
QueryResultTypeFilter |
Sets the type of query result or response. Only results for the specified type are returned. |
DocumentRelevanceOverrideConfigurations |
Overrides relevance tuning configurations of fields/attributes set at the index level. If you use this API to override the relevance tuning configured at the index level, but there is no relevance tuning configured at the index level, then Amazon Kendra does not apply any relevance tuning. If there is relevance tuning configured for fields at the index level, and you use this API to override only some of these fields, then for the fields you did not override, the importance is set to 1. |
PageNumber |
Query results are returned in pages the size of the
|
PageSize |
Sets the number of results that are returned in each page of results. The default page size is 10. The maximum number of results returned is 100. If you ask for more than 100 results, only 100 are returned. |
SortingConfiguration |
Provides information that determines how the results of the query are sorted. You can set the field that Amazon Kendra should sort the results on, and specify whether the results should be sorted in ascending or descending order. In the case of ties in sorting the results, the results are sorted by relevance. If you don't provide sorting configuration, the results are sorted by the relevance that Amazon Kendra determines for the result. |
SortingConfigurations |
Provides configuration information to determine how the results of a query are sorted. You can set upto 3 fields that Amazon Kendra should sort the results on, and specify whether the results should be sorted in ascending or descending order. The sort field quota can be increased. If you don't provide a sorting configuration, the results are sorted by the relevance that Amazon Kendra determines for the result. In the case of ties in sorting the results, the results are sorted by relevance. |
UserContext |
The user context token or user and group information. |
VisitorId |
Provides an identifier for a specific user. The
|
SpellCorrectionConfiguration |
Enables suggested spell corrections for queries. |
CollapseConfiguration |
Provides configuration to determine how to group results by document attribute value, and how to display them (collapsed or expanded) under a designated primary document for each group. |
Value¶
A list with the following syntax:
list(
QueryId = "string",
ResultItems = list(
list(
Id = "string",
Type = "DOCUMENT"|"QUESTION_ANSWER"|"ANSWER",
Format = "TABLE"|"TEXT",
AdditionalAttributes = list(
list(
Key = "string",
ValueType = "TEXT_WITH_HIGHLIGHTS_VALUE",
Value = list(
TextWithHighlightsValue = list(
Text = "string",
Highlights = list(
list(
BeginOffset = 123,
EndOffset = 123,
TopAnswer = TRUE|FALSE,
Type = "STANDARD"|"THESAURUS_SYNONYM"
)
)
)
)
)
),
DocumentId = "string",
DocumentTitle = list(
Text = "string",
Highlights = list(
list(
BeginOffset = 123,
EndOffset = 123,
TopAnswer = TRUE|FALSE,
Type = "STANDARD"|"THESAURUS_SYNONYM"
)
)
),
DocumentExcerpt = list(
Text = "string",
Highlights = list(
list(
BeginOffset = 123,
EndOffset = 123,
TopAnswer = TRUE|FALSE,
Type = "STANDARD"|"THESAURUS_SYNONYM"
)
)
),
DocumentURI = "string",
DocumentAttributes = list(
list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
)
),
ScoreAttributes = list(
ScoreConfidence = "VERY_HIGH"|"HIGH"|"MEDIUM"|"LOW"|"NOT_AVAILABLE"
),
FeedbackToken = "string",
TableExcerpt = list(
Rows = list(
list(
Cells = list(
list(
Value = "string",
TopAnswer = TRUE|FALSE,
Highlighted = TRUE|FALSE,
Header = TRUE|FALSE
)
)
)
),
TotalNumberOfRows = 123
),
CollapsedResultDetail = list(
DocumentAttribute = list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
),
ExpandedResults = list(
list(
Id = "string",
DocumentId = "string",
DocumentTitle = list(
Text = "string",
Highlights = list(
list(
BeginOffset = 123,
EndOffset = 123,
TopAnswer = TRUE|FALSE,
Type = "STANDARD"|"THESAURUS_SYNONYM"
)
)
),
DocumentExcerpt = list(
Text = "string",
Highlights = list(
list(
BeginOffset = 123,
EndOffset = 123,
TopAnswer = TRUE|FALSE,
Type = "STANDARD"|"THESAURUS_SYNONYM"
)
)
),
DocumentURI = "string",
DocumentAttributes = list(
list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
)
)
)
)
)
)
),
FacetResults = list(
list(
DocumentAttributeKey = "string",
DocumentAttributeValueType = "STRING_VALUE"|"STRING_LIST_VALUE"|"LONG_VALUE"|"DATE_VALUE",
DocumentAttributeValueCountPairs = list(
list(
DocumentAttributeValue = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
),
Count = 123,
FacetResults = list()
)
)
)
),
TotalNumberOfResults = 123,
Warnings = list(
list(
Message = "string",
Code = "QUERY_LANGUAGE_INVALID_SYNTAX"
)
),
SpellCorrectedQueries = list(
list(
SuggestedQueryText = "string",
Corrections = list(
list(
BeginOffset = 123,
EndOffset = 123,
Term = "string",
CorrectedTerm = "string"
)
)
)
),
FeaturedResultsItems = list(
list(
Id = "string",
Type = "DOCUMENT"|"QUESTION_ANSWER"|"ANSWER",
AdditionalAttributes = list(
list(
Key = "string",
ValueType = "TEXT_WITH_HIGHLIGHTS_VALUE",
Value = list(
TextWithHighlightsValue = list(
Text = "string",
Highlights = list(
list(
BeginOffset = 123,
EndOffset = 123,
TopAnswer = TRUE|FALSE,
Type = "STANDARD"|"THESAURUS_SYNONYM"
)
)
)
)
)
),
DocumentId = "string",
DocumentTitle = list(
Text = "string",
Highlights = list(
list(
BeginOffset = 123,
EndOffset = 123,
TopAnswer = TRUE|FALSE,
Type = "STANDARD"|"THESAURUS_SYNONYM"
)
)
),
DocumentExcerpt = list(
Text = "string",
Highlights = list(
list(
BeginOffset = 123,
EndOffset = 123,
TopAnswer = TRUE|FALSE,
Type = "STANDARD"|"THESAURUS_SYNONYM"
)
)
),
DocumentURI = "string",
DocumentAttributes = list(
list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
)
),
FeedbackToken = "string"
)
)
)
Request syntax¶
svc$query(
IndexId = "string",
QueryText = "string",
AttributeFilter = list(
AndAllFilters = list(
list()
),
OrAllFilters = list(
list()
),
NotFilter = list(),
EqualsTo = list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
),
ContainsAll = list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
),
ContainsAny = list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
),
GreaterThan = list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
),
GreaterThanOrEquals = list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
),
LessThan = list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
),
LessThanOrEquals = list(
Key = "string",
Value = list(
StringValue = "string",
StringListValue = list(
"string"
),
LongValue = 123,
DateValue = as.POSIXct(
"2015-01-01"
)
)
)
),
Facets = list(
list(
DocumentAttributeKey = "string",
Facets = list(),
MaxResults = 123
)
),
RequestedDocumentAttributes = list(
"string"
),
QueryResultTypeFilter = "DOCUMENT"|"QUESTION_ANSWER"|"ANSWER",
DocumentRelevanceOverrideConfigurations = list(
list(
Name = "string",
Relevance = list(
Freshness = TRUE|FALSE,
Importance = 123,
Duration = "string",
RankOrder = "ASCENDING"|"DESCENDING",
ValueImportanceMap = list(
123
)
)
)
),
PageNumber = 123,
PageSize = 123,
SortingConfiguration = list(
DocumentAttributeKey = "string",
SortOrder = "DESC"|"ASC"
),
SortingConfigurations = list(
list(
DocumentAttributeKey = "string",
SortOrder = "DESC"|"ASC"
)
),
UserContext = list(
Token = "string",
UserId = "string",
Groups = list(
"string"
),
DataSourceGroups = list(
list(
GroupId = "string",
DataSourceId = "string"
)
)
),
VisitorId = "string",
SpellCorrectionConfiguration = list(
IncludeQuerySpellCheckSuggestions = TRUE|FALSE
),
CollapseConfiguration = list(
DocumentAttributeKey = "string",
SortingConfigurations = list(
list(
DocumentAttributeKey = "string",
SortOrder = "DESC"|"ASC"
)
),
MissingAttributeKeyStrategy = "IGNORE"|"COLLAPSE"|"EXPAND",
Expand = TRUE|FALSE,
ExpandConfiguration = list(
MaxResultItemsToExpand = 123,
MaxExpandedResultsPerItem = 123
)
)
)