Get Event Prediction Metadata
frauddetector_get_event_prediction_metadata | R Documentation |
Gets details of the past fraud predictions for the specified event ID, event type, detector ID, and detector version ID that was generated in the specified time period¶
Description¶
Gets details of the past fraud predictions for the specified event ID, event type, detector ID, and detector version ID that was generated in the specified time period.
Usage¶
frauddetector_get_event_prediction_metadata(eventId, eventTypeName,
detectorId, detectorVersionId, predictionTimestamp)
Arguments¶
eventId
[required] The event ID.
eventTypeName
[required] The event type associated with the detector specified for the prediction.
detectorId
[required] The detector ID.
detectorVersionId
[required] The detector version ID.
predictionTimestamp
[required] The timestamp that defines when the prediction was generated. The timestamp must be specified using ISO 8601 standard in UTC.
We recommend calling
list_event_predictions
first, and using thepredictionTimestamp
value in the response to provide an accurate prediction timestamp value.
Value¶
A list with the following syntax:
list(
eventId = "string",
eventTypeName = "string",
entityId = "string",
entityType = "string",
eventTimestamp = "string",
detectorId = "string",
detectorVersionId = "string",
detectorVersionStatus = "string",
eventVariables = list(
list(
name = "string",
value = "string",
source = "string"
)
),
rules = list(
list(
ruleId = "string",
ruleVersion = "string",
expression = "string",
expressionWithValues = "string",
outcomes = list(
"string"
),
evaluated = TRUE|FALSE,
matched = TRUE|FALSE
)
),
ruleExecutionMode = "ALL_MATCHED"|"FIRST_MATCHED",
outcomes = list(
"string"
),
evaluatedModelVersions = list(
list(
modelId = "string",
modelVersion = "string",
modelType = "string",
evaluations = list(
list(
outputVariableName = "string",
evaluationScore = "string",
predictionExplanations = list(
variableImpactExplanations = list(
list(
eventVariableName = "string",
relativeImpact = "string",
logOddsImpact = 123.0
)
),
aggregatedVariablesImpactExplanations = list(
list(
eventVariableNames = list(
"string"
),
relativeImpact = "string",
logOddsImpact = 123.0
)
)
)
)
)
)
),
evaluatedExternalModels = list(
list(
modelEndpoint = "string",
useEventVariables = TRUE|FALSE,
inputVariables = list(
"string"
),
outputVariables = list(
"string"
)
)
),
predictionTimestamp = "string"
)