Detect Phi
comprehendmedical_detect_phi | R Documentation |
Inspects the clinical text for protected health information (PHI) entities and returns the entity category, location, and confidence score for each entity¶
Description¶
Inspects the clinical text for protected health information (PHI) entities and returns the entity category, location, and confidence score for each entity. Amazon Comprehend Medical only detects entities in English language texts.
Usage¶
Arguments¶
Text
[required] A UTF-8 text string containing the clinical content being examined for PHI entities.
Value¶
A list with the following syntax:
list(
Entities = list(
list(
Id = 123,
BeginOffset = 123,
EndOffset = 123,
Score = 123.0,
Text = "string",
Category = "MEDICATION"|"MEDICAL_CONDITION"|"PROTECTED_HEALTH_INFORMATION"|"TEST_TREATMENT_PROCEDURE"|"ANATOMY"|"TIME_EXPRESSION"|"BEHAVIORAL_ENVIRONMENTAL_SOCIAL",
Type = "NAME"|"DX_NAME"|"DOSAGE"|"ROUTE_OR_MODE"|"FORM"|"FREQUENCY"|"DURATION"|"GENERIC_NAME"|"BRAND_NAME"|"STRENGTH"|"RATE"|"ACUITY"|"TEST_NAME"|"TEST_VALUE"|"TEST_UNITS"|"TEST_UNIT"|"PROCEDURE_NAME"|"TREATMENT_NAME"|"DATE"|"AGE"|"CONTACT_POINT"|"PHONE_OR_FAX"|"EMAIL"|"IDENTIFIER"|"ID"|"URL"|"ADDRESS"|"PROFESSION"|"SYSTEM_ORGAN_SITE"|"DIRECTION"|"QUALITY"|"QUANTITY"|"TIME_EXPRESSION"|"TIME_TO_MEDICATION_NAME"|"TIME_TO_DX_NAME"|"TIME_TO_TEST_NAME"|"TIME_TO_PROCEDURE_NAME"|"TIME_TO_TREATMENT_NAME"|"AMOUNT"|"GENDER"|"RACE_ETHNICITY"|"ALLERGIES"|"TOBACCO_USE"|"ALCOHOL_CONSUMPTION"|"REC_DRUG_USE",
Traits = list(
list(
Name = "SIGN"|"SYMPTOM"|"DIAGNOSIS"|"NEGATION"|"PERTAINS_TO_FAMILY"|"HYPOTHETICAL"|"LOW_CONFIDENCE"|"PAST_HISTORY"|"FUTURE",
Score = 123.0
)
),
Attributes = list(
list(
Type = "NAME"|"DX_NAME"|"DOSAGE"|"ROUTE_OR_MODE"|"FORM"|"FREQUENCY"|"DURATION"|"GENERIC_NAME"|"BRAND_NAME"|"STRENGTH"|"RATE"|"ACUITY"|"TEST_NAME"|"TEST_VALUE"|"TEST_UNITS"|"TEST_UNIT"|"PROCEDURE_NAME"|"TREATMENT_NAME"|"DATE"|"AGE"|"CONTACT_POINT"|"PHONE_OR_FAX"|"EMAIL"|"IDENTIFIER"|"ID"|"URL"|"ADDRESS"|"PROFESSION"|"SYSTEM_ORGAN_SITE"|"DIRECTION"|"QUALITY"|"QUANTITY"|"TIME_EXPRESSION"|"TIME_TO_MEDICATION_NAME"|"TIME_TO_DX_NAME"|"TIME_TO_TEST_NAME"|"TIME_TO_PROCEDURE_NAME"|"TIME_TO_TREATMENT_NAME"|"AMOUNT"|"GENDER"|"RACE_ETHNICITY"|"ALLERGIES"|"TOBACCO_USE"|"ALCOHOL_CONSUMPTION"|"REC_DRUG_USE",
Score = 123.0,
RelationshipScore = 123.0,
RelationshipType = "EVERY"|"WITH_DOSAGE"|"ADMINISTERED_VIA"|"FOR"|"NEGATIVE"|"OVERLAP"|"DOSAGE"|"ROUTE_OR_MODE"|"FORM"|"FREQUENCY"|"DURATION"|"STRENGTH"|"RATE"|"ACUITY"|"TEST_VALUE"|"TEST_UNITS"|"TEST_UNIT"|"DIRECTION"|"SYSTEM_ORGAN_SITE"|"AMOUNT"|"USAGE"|"QUALITY",
Id = 123,
BeginOffset = 123,
EndOffset = 123,
Text = "string",
Category = "MEDICATION"|"MEDICAL_CONDITION"|"PROTECTED_HEALTH_INFORMATION"|"TEST_TREATMENT_PROCEDURE"|"ANATOMY"|"TIME_EXPRESSION"|"BEHAVIORAL_ENVIRONMENTAL_SOCIAL",
Traits = list(
list(
Name = "SIGN"|"SYMPTOM"|"DIAGNOSIS"|"NEGATION"|"PERTAINS_TO_FAMILY"|"HYPOTHETICAL"|"LOW_CONFIDENCE"|"PAST_HISTORY"|"FUTURE",
Score = 123.0
)
)
)
)
)
),
PaginationToken = "string",
ModelVersion = "string"
)