Describe Anomaly Detectors
cloudwatch_describe_anomaly_detectors | R Documentation |
Lists the anomaly detection models that you have created in your account¶
Description¶
Lists the anomaly detection models that you have created in your
account. For single metric anomaly detectors, you can list all of the
models in your account or filter the results to only the models that are
related to a certain namespace, metric name, or metric dimension. For
metric math anomaly detectors, you can list them by adding METRIC_MATH
to the AnomalyDetectorTypes
array. This will return all metric math
anomaly detectors in your account.
Usage¶
cloudwatch_describe_anomaly_detectors(NextToken, MaxResults, Namespace,
MetricName, Dimensions, AnomalyDetectorTypes)
Arguments¶
NextToken
Use the token returned by the previous operation to request the next page of results.
MaxResults
The maximum number of results to return in one operation. The maximum value that you can specify is 100.
To retrieve the remaining results, make another call with the returned
NextToken
value.Namespace
Limits the results to only the anomaly detection models that are associated with the specified namespace.
MetricName
Limits the results to only the anomaly detection models that are associated with the specified metric name. If there are multiple metrics with this name in different namespaces that have anomaly detection models, they're all returned.
Dimensions
Limits the results to only the anomaly detection models that are associated with the specified metric dimensions. If there are multiple metrics that have these dimensions and have anomaly detection models associated, they're all returned.
AnomalyDetectorTypes
The anomaly detector types to request when using
DescribeAnomalyDetectorsInput
. If empty, defaults toSINGLE_METRIC
.
Value¶
A list with the following syntax:
list(
AnomalyDetectors = list(
list(
Namespace = "string",
MetricName = "string",
Dimensions = list(
list(
Name = "string",
Value = "string"
)
),
Stat = "string",
Configuration = list(
ExcludedTimeRanges = list(
list(
StartTime = as.POSIXct(
"2015-01-01"
),
EndTime = as.POSIXct(
"2015-01-01"
)
)
),
MetricTimezone = "string"
),
StateValue = "PENDING_TRAINING"|"TRAINED_INSUFFICIENT_DATA"|"TRAINED",
MetricCharacteristics = list(
PeriodicSpikes = TRUE|FALSE
),
SingleMetricAnomalyDetector = list(
AccountId = "string",
Namespace = "string",
MetricName = "string",
Dimensions = list(
list(
Name = "string",
Value = "string"
)
),
Stat = "string"
),
MetricMathAnomalyDetector = list(
MetricDataQueries = list(
list(
Id = "string",
MetricStat = list(
Metric = list(
Namespace = "string",
MetricName = "string",
Dimensions = list(
list(
Name = "string",
Value = "string"
)
)
),
Period = 123,
Stat = "string",
Unit = "Seconds"|"Microseconds"|"Milliseconds"|"Bytes"|"Kilobytes"|"Megabytes"|"Gigabytes"|"Terabytes"|"Bits"|"Kilobits"|"Megabits"|"Gigabits"|"Terabits"|"Percent"|"Count"|"Bytes/Second"|"Kilobytes/Second"|"Megabytes/Second"|"Gigabytes/Second"|"Terabytes/Second"|"Bits/Second"|"Kilobits/Second"|"Megabits/Second"|"Gigabits/Second"|"Terabits/Second"|"Count/Second"|"None"
),
Expression = "string",
Label = "string",
ReturnData = TRUE|FALSE,
Period = 123,
AccountId = "string"
)
)
)
)
),
NextToken = "string"
)