Converse Stream
bedrockruntime_converse_stream | R Documentation |
Sends messages to the specified Amazon Bedrock model and returns the response in a stream¶
Description¶
Sends messages to the specified Amazon Bedrock model and returns the
response in a stream. converse_stream
provides a consistent API that
works with all Amazon Bedrock models that support messages. This allows
you to write code once and use it with different models. Should a model
have unique inference parameters, you can also pass those unique
parameters to the model.
To find out if a model supports streaming, call
GetFoundationModel
and check the responseStreamingSupported
field in the response.
The CLI doesn't support streaming operations in Amazon Bedrock,
including converse_stream
.
Amazon Bedrock doesn't store any text, images, or documents that you provide as content. The data is only used to generate the response.
You can submit a prompt by including it in the messages
field,
specifying the modelId
of a foundation model or inference profile to
run inference on it, and including any other fields that are relevant to
your use case.
You can also submit a prompt from Prompt management by specifying the
ARN of the prompt version and including a map of variables to values in
the promptVariables
field. You can append more messages to the prompt
by using the messages
field. If you use a prompt from Prompt
management, you can't include the following fields in the request:
additionalModelRequestFields
, inferenceConfig
, system
, or
toolConfig
. Instead, these fields must be defined through Prompt
management. For more information, see Use a prompt from Prompt
management.
For information about the Converse API, see Use the Converse API in the Amazon Bedrock User Guide. To use a guardrail, see Use a guardrail with the Converse API in the Amazon Bedrock User Guide. To use a tool with a model, see Tool use (Function calling) in the Amazon Bedrock User Guide
For example code, see Conversation streaming example in the Amazon Bedrock User Guide.
This operation requires permission for the
bedrock:InvokeModelWithResponseStream
action.
To deny all inference access to resources that you specify in the
modelId field, you need to deny access to the bedrock:InvokeModel
and
bedrock:InvokeModelWithResponseStream
actions. Doing this also denies
access to the resource through the base inference actions
(invoke_model
and invoke_model_with_response_stream
). For more
information see Deny access for inference on specific
models.
For troubleshooting some of the common errors you might encounter when
using the converse_stream
API, see Troubleshooting Amazon Bedrock API
Error
Codes
in the Amazon Bedrock User Guide
Usage¶
bedrockruntime_converse_stream(modelId, messages, system,
inferenceConfig, toolConfig, guardrailConfig,
additionalModelRequestFields, promptVariables,
additionalModelResponseFieldPaths, requestMetadata, performanceConfig)
Arguments¶
modelId
[required] Specifies the model or throughput with which to run inference, or the prompt resource to use in inference. The value depends on the resource that you use:
If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide.
If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see Supported Regions and models for cross-region inference in the Amazon Bedrock User Guide.
If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide.
If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
To include a prompt that was defined in Prompt management, specify the ARN of the prompt version to use.
The Converse API doesn't support imported models.
messages
The messages that you want to send to the model.
system
A prompt that provides instructions or context to the model about the task it should perform, or the persona it should adopt during the conversation.
inferenceConfig
Inference parameters to pass to the model.
converse
andconverse_stream
support a base set of inference parameters. If you need to pass additional parameters that the model supports, use theadditionalModelRequestFields
request field.toolConfig
Configuration information for the tools that the model can use when generating a response.
For information about models that support streaming tool use, see Supported models and model features.
guardrailConfig
Configuration information for a guardrail that you want to use in the request. If you include
guardContent
blocks in thecontent
field in themessages
field, the guardrail operates only on those messages. If you include noguardContent
blocks, the guardrail operates on all messages in the request body and in any included prompt resource.additionalModelRequestFields
Additional inference parameters that the model supports, beyond the base set of inference parameters that
converse
andconverse_stream
support in theinferenceConfig
field. For more information, see Model parameters.promptVariables
Contains a map of variables in a prompt from Prompt management to objects containing the values to fill in for them when running model invocation. This field is ignored if you don't specify a prompt resource in the
modelId
field.additionalModelResponseFieldPaths
Additional model parameters field paths to return in the response.
converse
andconverse_stream
return the requested fields as a JSON Pointer object in theadditionalModelResponseFields
field. The following is example JSON foradditionalModelResponseFieldPaths
.[ "/stop_sequence" ]
For information about the JSON Pointer syntax, see the Internet Engineering Task Force (IETF) documentation.
converse
andconverse_stream
reject an empty JSON Pointer or incorrectly structured JSON Pointer with a400
error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored byconverse
.requestMetadata
Key-value pairs that you can use to filter invocation logs.
performanceConfig
Model performance settings for the request.
Value¶
A list with the following syntax:
list(
stream = list(
messageStart = list(
role = "user"|"assistant"
),
contentBlockStart = list(
start = list(
toolUse = list(
toolUseId = "string",
name = "string"
)
),
contentBlockIndex = 123
),
contentBlockDelta = list(
delta = list(
text = "string",
toolUse = list(
input = "string"
)
),
contentBlockIndex = 123
),
contentBlockStop = list(
contentBlockIndex = 123
),
messageStop = list(
stopReason = "end_turn"|"tool_use"|"max_tokens"|"stop_sequence"|"guardrail_intervened"|"content_filtered",
additionalModelResponseFields = list()
),
metadata = list(
usage = list(
inputTokens = 123,
outputTokens = 123,
totalTokens = 123
),
metrics = list(
latencyMs = 123
),
trace = list(
guardrail = list(
modelOutput = list(
"string"
),
inputAssessment = list(
list(
topicPolicy = list(
topics = list(
list(
name = "string",
type = "DENY",
action = "BLOCKED"
)
)
),
contentPolicy = list(
filters = list(
list(
type = "INSULTS"|"HATE"|"SEXUAL"|"VIOLENCE"|"MISCONDUCT"|"PROMPT_ATTACK",
confidence = "NONE"|"LOW"|"MEDIUM"|"HIGH",
filterStrength = "NONE"|"LOW"|"MEDIUM"|"HIGH",
action = "BLOCKED"
)
)
),
wordPolicy = list(
customWords = list(
list(
match = "string",
action = "BLOCKED"
)
),
managedWordLists = list(
list(
match = "string",
type = "PROFANITY",
action = "BLOCKED"
)
)
),
sensitiveInformationPolicy = list(
piiEntities = list(
list(
match = "string",
type = "ADDRESS"|"AGE"|"AWS_ACCESS_KEY"|"AWS_SECRET_KEY"|"CA_HEALTH_NUMBER"|"CA_SOCIAL_INSURANCE_NUMBER"|"CREDIT_DEBIT_CARD_CVV"|"CREDIT_DEBIT_CARD_EXPIRY"|"CREDIT_DEBIT_CARD_NUMBER"|"DRIVER_ID"|"EMAIL"|"INTERNATIONAL_BANK_ACCOUNT_NUMBER"|"IP_ADDRESS"|"LICENSE_PLATE"|"MAC_ADDRESS"|"NAME"|"PASSWORD"|"PHONE"|"PIN"|"SWIFT_CODE"|"UK_NATIONAL_HEALTH_SERVICE_NUMBER"|"UK_NATIONAL_INSURANCE_NUMBER"|"UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER"|"URL"|"USERNAME"|"US_BANK_ACCOUNT_NUMBER"|"US_BANK_ROUTING_NUMBER"|"US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER"|"US_PASSPORT_NUMBER"|"US_SOCIAL_SECURITY_NUMBER"|"VEHICLE_IDENTIFICATION_NUMBER",
action = "ANONYMIZED"|"BLOCKED"
)
),
regexes = list(
list(
name = "string",
match = "string",
regex = "string",
action = "ANONYMIZED"|"BLOCKED"
)
)
),
contextualGroundingPolicy = list(
filters = list(
list(
type = "GROUNDING"|"RELEVANCE",
threshold = 123.0,
score = 123.0,
action = "BLOCKED"|"NONE"
)
)
),
invocationMetrics = list(
guardrailProcessingLatency = 123,
usage = list(
topicPolicyUnits = 123,
contentPolicyUnits = 123,
wordPolicyUnits = 123,
sensitiveInformationPolicyUnits = 123,
sensitiveInformationPolicyFreeUnits = 123,
contextualGroundingPolicyUnits = 123
),
guardrailCoverage = list(
textCharacters = list(
guarded = 123,
total = 123
),
images = list(
guarded = 123,
total = 123
)
)
)
)
),
outputAssessments = list(
list(
list(
topicPolicy = list(
topics = list(
list(
name = "string",
type = "DENY",
action = "BLOCKED"
)
)
),
contentPolicy = list(
filters = list(
list(
type = "INSULTS"|"HATE"|"SEXUAL"|"VIOLENCE"|"MISCONDUCT"|"PROMPT_ATTACK",
confidence = "NONE"|"LOW"|"MEDIUM"|"HIGH",
filterStrength = "NONE"|"LOW"|"MEDIUM"|"HIGH",
action = "BLOCKED"
)
)
),
wordPolicy = list(
customWords = list(
list(
match = "string",
action = "BLOCKED"
)
),
managedWordLists = list(
list(
match = "string",
type = "PROFANITY",
action = "BLOCKED"
)
)
),
sensitiveInformationPolicy = list(
piiEntities = list(
list(
match = "string",
type = "ADDRESS"|"AGE"|"AWS_ACCESS_KEY"|"AWS_SECRET_KEY"|"CA_HEALTH_NUMBER"|"CA_SOCIAL_INSURANCE_NUMBER"|"CREDIT_DEBIT_CARD_CVV"|"CREDIT_DEBIT_CARD_EXPIRY"|"CREDIT_DEBIT_CARD_NUMBER"|"DRIVER_ID"|"EMAIL"|"INTERNATIONAL_BANK_ACCOUNT_NUMBER"|"IP_ADDRESS"|"LICENSE_PLATE"|"MAC_ADDRESS"|"NAME"|"PASSWORD"|"PHONE"|"PIN"|"SWIFT_CODE"|"UK_NATIONAL_HEALTH_SERVICE_NUMBER"|"UK_NATIONAL_INSURANCE_NUMBER"|"UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER"|"URL"|"USERNAME"|"US_BANK_ACCOUNT_NUMBER"|"US_BANK_ROUTING_NUMBER"|"US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER"|"US_PASSPORT_NUMBER"|"US_SOCIAL_SECURITY_NUMBER"|"VEHICLE_IDENTIFICATION_NUMBER",
action = "ANONYMIZED"|"BLOCKED"
)
),
regexes = list(
list(
name = "string",
match = "string",
regex = "string",
action = "ANONYMIZED"|"BLOCKED"
)
)
),
contextualGroundingPolicy = list(
filters = list(
list(
type = "GROUNDING"|"RELEVANCE",
threshold = 123.0,
score = 123.0,
action = "BLOCKED"|"NONE"
)
)
),
invocationMetrics = list(
guardrailProcessingLatency = 123,
usage = list(
topicPolicyUnits = 123,
contentPolicyUnits = 123,
wordPolicyUnits = 123,
sensitiveInformationPolicyUnits = 123,
sensitiveInformationPolicyFreeUnits = 123,
contextualGroundingPolicyUnits = 123
),
guardrailCoverage = list(
textCharacters = list(
guarded = 123,
total = 123
),
images = list(
guarded = 123,
total = 123
)
)
)
)
)
)
),
promptRouter = list(
invokedModelId = "string"
)
),
performanceConfig = list(
latency = "standard"|"optimized"
)
),
internalServerException = list(
message = "string"
),
modelStreamErrorException = list(
message = "string",
originalStatusCode = 123,
originalMessage = "string"
),
validationException = list(
message = "string"
),
throttlingException = list(
message = "string"
),
serviceUnavailableException = list(
message = "string"
)
)
)
Request syntax¶
svc$converse_stream(
modelId = "string",
messages = list(
list(
role = "user"|"assistant",
content = list(
list(
text = "string",
image = list(
format = "png"|"jpeg"|"gif"|"webp",
source = list(
bytes = raw
)
),
document = list(
format = "pdf"|"csv"|"doc"|"docx"|"xls"|"xlsx"|"html"|"txt"|"md",
name = "string",
source = list(
bytes = raw
)
),
video = list(
format = "mkv"|"mov"|"mp4"|"webm"|"flv"|"mpeg"|"mpg"|"wmv"|"three_gp",
source = list(
bytes = raw,
s3Location = list(
uri = "string",
bucketOwner = "string"
)
)
),
toolUse = list(
toolUseId = "string",
name = "string",
input = list()
),
toolResult = list(
toolUseId = "string",
content = list(
list(
json = list(),
text = "string",
image = list(
format = "png"|"jpeg"|"gif"|"webp",
source = list(
bytes = raw
)
),
document = list(
format = "pdf"|"csv"|"doc"|"docx"|"xls"|"xlsx"|"html"|"txt"|"md",
name = "string",
source = list(
bytes = raw
)
),
video = list(
format = "mkv"|"mov"|"mp4"|"webm"|"flv"|"mpeg"|"mpg"|"wmv"|"three_gp",
source = list(
bytes = raw,
s3Location = list(
uri = "string",
bucketOwner = "string"
)
)
)
)
),
status = "success"|"error"
),
guardContent = list(
text = list(
text = "string",
qualifiers = list(
"grounding_source"|"query"|"guard_content"
)
),
image = list(
format = "png"|"jpeg",
source = list(
bytes = raw
)
)
)
)
)
)
),
system = list(
list(
text = "string",
guardContent = list(
text = list(
text = "string",
qualifiers = list(
"grounding_source"|"query"|"guard_content"
)
),
image = list(
format = "png"|"jpeg",
source = list(
bytes = raw
)
)
)
)
),
inferenceConfig = list(
maxTokens = 123,
temperature = 123.0,
topP = 123.0,
stopSequences = list(
"string"
)
),
toolConfig = list(
tools = list(
list(
toolSpec = list(
name = "string",
description = "string",
inputSchema = list(
json = list()
)
)
)
),
toolChoice = list(
auto = list(),
any = list(),
tool = list(
name = "string"
)
)
),
guardrailConfig = list(
guardrailIdentifier = "string",
guardrailVersion = "string",
trace = "enabled"|"disabled",
streamProcessingMode = "sync"|"async"
),
additionalModelRequestFields = list(),
promptVariables = list(
list(
text = "string"
)
),
additionalModelResponseFieldPaths = list(
"string"
),
requestMetadata = list(
"string"
),
performanceConfig = list(
latency = "standard"|"optimized"
)
)