Converse
bedrockruntime_converse | R Documentation |
Sends messages to the specified Amazon Bedrock model¶
Description¶
Sends messages to the specified Amazon Bedrock model. converse
provides a consistent interface that works with all models that support
messages. This allows you to write code once and use it with different
models. If a model has unique inference parameters, you can also pass
those unique parameters to the model.
Amazon Bedrock doesn't store any text, images, or documents that you provide as content. The data is only used to generate the response.
For information about the Converse API, see Use the Converse API in the Amazon Bedrock User Guide. To use a guardrail, see Use a guardrail with the Converse API in the Amazon Bedrock User Guide. To use a tool with a model, see Tool use (Function calling) in the Amazon Bedrock User Guide
For example code, see Converse API examples in the Amazon Bedrock User Guide.
This operation requires permission for the bedrock:InvokeModel
action.
Usage¶
bedrockruntime_converse(modelId, messages, system, inferenceConfig,
toolConfig, guardrailConfig, additionalModelRequestFields,
additionalModelResponseFieldPaths)
Arguments¶
modelId
[required] The identifier for the model that you want to call.
The
modelId
to provide depends on the type of model or throughput that you use:If you use a base model, specify the model ID or its ARN. For a list of model IDs for base models, see Amazon Bedrock base model IDs (on-demand throughput) in the Amazon Bedrock User Guide.
If you use an inference profile, specify the inference profile ID or its ARN. For a list of inference profile IDs, see Supported Regions and models for cross-region inference in the Amazon Bedrock User Guide.
If you use a provisioned model, specify the ARN of the Provisioned Throughput. For more information, see Run inference using a Provisioned Throughput in the Amazon Bedrock User Guide.
If you use a custom model, first purchase Provisioned Throughput for it. Then specify the ARN of the resulting provisioned model. For more information, see Use a custom model in Amazon Bedrock in the Amazon Bedrock User Guide.
The Converse API doesn't support imported models.
messages
[required] The messages that you want to send to the model.
system
A system prompt to pass to the model.
inferenceConfig
Inference parameters to pass to the model.
converse
supports a base set of inference parameters. If you need to pass additional parameters that the model supports, use theadditionalModelRequestFields
request field.toolConfig
Configuration information for the tools that the model can use when generating a response.
This field is only supported by Anthropic Claude 3, Cohere Command R, Cohere Command R+, and Mistral Large models.
guardrailConfig
Configuration information for a guardrail that you want to use in the request.
additionalModelRequestFields
Additional inference parameters that the model supports, beyond the base set of inference parameters that
converse
supports in theinferenceConfig
field. For more information, see Model parameters.additionalModelResponseFieldPaths
Additional model parameters field paths to return in the response.
converse
returns the requested fields as a JSON Pointer object in theadditionalModelResponseFields
field. The following is example JSON foradditionalModelResponseFieldPaths
.[ "/stop_sequence" ]
For information about the JSON Pointer syntax, see the Internet Engineering Task Force (IETF) documentation.
converse
rejects an empty JSON Pointer or incorrectly structured JSON Pointer with a400
error code. if the JSON Pointer is valid, but the requested field is not in the model response, it is ignored byconverse
.
Value¶
A list with the following syntax:
list(
output = list(
message = list(
role = "user"|"assistant",
content = list(
list(
text = "string",
image = list(
format = "png"|"jpeg"|"gif"|"webp",
source = list(
bytes = raw
)
),
document = list(
format = "pdf"|"csv"|"doc"|"docx"|"xls"|"xlsx"|"html"|"txt"|"md",
name = "string",
source = list(
bytes = raw
)
),
toolUse = list(
toolUseId = "string",
name = "string",
input = list()
),
toolResult = list(
toolUseId = "string",
content = list(
list(
json = list(),
text = "string",
image = list(
format = "png"|"jpeg"|"gif"|"webp",
source = list(
bytes = raw
)
),
document = list(
format = "pdf"|"csv"|"doc"|"docx"|"xls"|"xlsx"|"html"|"txt"|"md",
name = "string",
source = list(
bytes = raw
)
)
)
),
status = "success"|"error"
),
guardContent = list(
text = list(
text = "string",
qualifiers = list(
"grounding_source"|"query"|"guard_content"
)
)
)
)
)
)
),
stopReason = "end_turn"|"tool_use"|"max_tokens"|"stop_sequence"|"guardrail_intervened"|"content_filtered",
usage = list(
inputTokens = 123,
outputTokens = 123,
totalTokens = 123
),
metrics = list(
latencyMs = 123
),
additionalModelResponseFields = list(),
trace = list(
guardrail = list(
modelOutput = list(
"string"
),
inputAssessment = list(
list(
topicPolicy = list(
topics = list(
list(
name = "string",
type = "DENY",
action = "BLOCKED"
)
)
),
contentPolicy = list(
filters = list(
list(
type = "INSULTS"|"HATE"|"SEXUAL"|"VIOLENCE"|"MISCONDUCT"|"PROMPT_ATTACK",
confidence = "NONE"|"LOW"|"MEDIUM"|"HIGH",
action = "BLOCKED"
)
)
),
wordPolicy = list(
customWords = list(
list(
match = "string",
action = "BLOCKED"
)
),
managedWordLists = list(
list(
match = "string",
type = "PROFANITY",
action = "BLOCKED"
)
)
),
sensitiveInformationPolicy = list(
piiEntities = list(
list(
match = "string",
type = "ADDRESS"|"AGE"|"AWS_ACCESS_KEY"|"AWS_SECRET_KEY"|"CA_HEALTH_NUMBER"|"CA_SOCIAL_INSURANCE_NUMBER"|"CREDIT_DEBIT_CARD_CVV"|"CREDIT_DEBIT_CARD_EXPIRY"|"CREDIT_DEBIT_CARD_NUMBER"|"DRIVER_ID"|"EMAIL"|"INTERNATIONAL_BANK_ACCOUNT_NUMBER"|"IP_ADDRESS"|"LICENSE_PLATE"|"MAC_ADDRESS"|"NAME"|"PASSWORD"|"PHONE"|"PIN"|"SWIFT_CODE"|"UK_NATIONAL_HEALTH_SERVICE_NUMBER"|"UK_NATIONAL_INSURANCE_NUMBER"|"UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER"|"URL"|"USERNAME"|"US_BANK_ACCOUNT_NUMBER"|"US_BANK_ROUTING_NUMBER"|"US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER"|"US_PASSPORT_NUMBER"|"US_SOCIAL_SECURITY_NUMBER"|"VEHICLE_IDENTIFICATION_NUMBER",
action = "ANONYMIZED"|"BLOCKED"
)
),
regexes = list(
list(
name = "string",
match = "string",
regex = "string",
action = "ANONYMIZED"|"BLOCKED"
)
)
),
contextualGroundingPolicy = list(
filters = list(
list(
type = "GROUNDING"|"RELEVANCE",
threshold = 123.0,
score = 123.0,
action = "BLOCKED"|"NONE"
)
)
)
)
),
outputAssessments = list(
list(
list(
topicPolicy = list(
topics = list(
list(
name = "string",
type = "DENY",
action = "BLOCKED"
)
)
),
contentPolicy = list(
filters = list(
list(
type = "INSULTS"|"HATE"|"SEXUAL"|"VIOLENCE"|"MISCONDUCT"|"PROMPT_ATTACK",
confidence = "NONE"|"LOW"|"MEDIUM"|"HIGH",
action = "BLOCKED"
)
)
),
wordPolicy = list(
customWords = list(
list(
match = "string",
action = "BLOCKED"
)
),
managedWordLists = list(
list(
match = "string",
type = "PROFANITY",
action = "BLOCKED"
)
)
),
sensitiveInformationPolicy = list(
piiEntities = list(
list(
match = "string",
type = "ADDRESS"|"AGE"|"AWS_ACCESS_KEY"|"AWS_SECRET_KEY"|"CA_HEALTH_NUMBER"|"CA_SOCIAL_INSURANCE_NUMBER"|"CREDIT_DEBIT_CARD_CVV"|"CREDIT_DEBIT_CARD_EXPIRY"|"CREDIT_DEBIT_CARD_NUMBER"|"DRIVER_ID"|"EMAIL"|"INTERNATIONAL_BANK_ACCOUNT_NUMBER"|"IP_ADDRESS"|"LICENSE_PLATE"|"MAC_ADDRESS"|"NAME"|"PASSWORD"|"PHONE"|"PIN"|"SWIFT_CODE"|"UK_NATIONAL_HEALTH_SERVICE_NUMBER"|"UK_NATIONAL_INSURANCE_NUMBER"|"UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER"|"URL"|"USERNAME"|"US_BANK_ACCOUNT_NUMBER"|"US_BANK_ROUTING_NUMBER"|"US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER"|"US_PASSPORT_NUMBER"|"US_SOCIAL_SECURITY_NUMBER"|"VEHICLE_IDENTIFICATION_NUMBER",
action = "ANONYMIZED"|"BLOCKED"
)
),
regexes = list(
list(
name = "string",
match = "string",
regex = "string",
action = "ANONYMIZED"|"BLOCKED"
)
)
),
contextualGroundingPolicy = list(
filters = list(
list(
type = "GROUNDING"|"RELEVANCE",
threshold = 123.0,
score = 123.0,
action = "BLOCKED"|"NONE"
)
)
)
)
)
)
)
)
)
Request syntax¶
svc$converse(
modelId = "string",
messages = list(
list(
role = "user"|"assistant",
content = list(
list(
text = "string",
image = list(
format = "png"|"jpeg"|"gif"|"webp",
source = list(
bytes = raw
)
),
document = list(
format = "pdf"|"csv"|"doc"|"docx"|"xls"|"xlsx"|"html"|"txt"|"md",
name = "string",
source = list(
bytes = raw
)
),
toolUse = list(
toolUseId = "string",
name = "string",
input = list()
),
toolResult = list(
toolUseId = "string",
content = list(
list(
json = list(),
text = "string",
image = list(
format = "png"|"jpeg"|"gif"|"webp",
source = list(
bytes = raw
)
),
document = list(
format = "pdf"|"csv"|"doc"|"docx"|"xls"|"xlsx"|"html"|"txt"|"md",
name = "string",
source = list(
bytes = raw
)
)
)
),
status = "success"|"error"
),
guardContent = list(
text = list(
text = "string",
qualifiers = list(
"grounding_source"|"query"|"guard_content"
)
)
)
)
)
)
),
system = list(
list(
text = "string",
guardContent = list(
text = list(
text = "string",
qualifiers = list(
"grounding_source"|"query"|"guard_content"
)
)
)
)
),
inferenceConfig = list(
maxTokens = 123,
temperature = 123.0,
topP = 123.0,
stopSequences = list(
"string"
)
),
toolConfig = list(
tools = list(
list(
toolSpec = list(
name = "string",
description = "string",
inputSchema = list(
json = list()
)
)
)
),
toolChoice = list(
auto = list(),
any = list(),
tool = list(
name = "string"
)
)
),
guardrailConfig = list(
guardrailIdentifier = "string",
guardrailVersion = "string",
trace = "enabled"|"disabled"
),
additionalModelRequestFields = list(),
additionalModelResponseFieldPaths = list(
"string"
)
)