Update Flow
bedrockagent_update_flow | R Documentation |
Modifies a flow¶
Description¶
Modifies a flow. Include both fields that you want to keep and fields that you want to change. For more information, see How it works and Create a flow in Amazon Bedrock in the Amazon Bedrock User Guide.
Usage¶
bedrockagent_update_flow(customerEncryptionKeyArn, definition,
description, executionRoleArn, flowIdentifier, name)
Arguments¶
customerEncryptionKeyArn
The Amazon Resource Name (ARN) of the KMS key to encrypt the flow.
definition
A definition of the nodes and the connections between the nodes in the flow.
description
A description for the flow.
executionRoleArn
[required] The Amazon Resource Name (ARN) of the service role with permissions to create and manage a flow. For more information, see Create a service role for flows in Amazon Bedrock in the Amazon Bedrock User Guide.
flowIdentifier
[required] The unique identifier of the flow.
name
[required] A name for the flow.
Value¶
A list with the following syntax:
list(
arn = "string",
createdAt = as.POSIXct(
"2015-01-01"
),
customerEncryptionKeyArn = "string",
definition = list(
connections = list(
list(
configuration = list(
conditional = list(
condition = "string"
),
data = list(
sourceOutput = "string",
targetInput = "string"
)
),
name = "string",
source = "string",
target = "string",
type = "Data"|"Conditional"
)
),
nodes = list(
list(
configuration = list(
agent = list(
agentAliasArn = "string"
),
collector = list(),
condition = list(
conditions = list(
list(
expression = "string",
name = "string"
)
)
),
input = list(),
iterator = list(),
knowledgeBase = list(
guardrailConfiguration = list(
guardrailIdentifier = "string",
guardrailVersion = "string"
),
knowledgeBaseId = "string",
modelId = "string"
),
lambdaFunction = list(
lambdaArn = "string"
),
lex = list(
botAliasArn = "string",
localeId = "string"
),
output = list(),
prompt = list(
guardrailConfiguration = list(
guardrailIdentifier = "string",
guardrailVersion = "string"
),
sourceConfiguration = list(
inline = list(
additionalModelRequestFields = list(),
inferenceConfiguration = list(
text = list(
maxTokens = 123,
stopSequences = list(
"string"
),
temperature = 123.0,
topP = 123.0
)
),
modelId = "string",
templateConfiguration = list(
chat = list(
inputVariables = list(
list(
name = "string"
)
),
messages = list(
list(
content = list(
list(
text = "string"
)
),
role = "user"|"assistant"
)
),
system = list(
list(
text = "string"
)
),
toolConfiguration = list(
toolChoice = list(
any = list(),
auto = list(),
tool = list(
name = "string"
)
),
tools = list(
list(
toolSpec = list(
description = "string",
inputSchema = list(
json = list()
),
name = "string"
)
)
)
)
),
text = list(
inputVariables = list(
list(
name = "string"
)
),
text = "string"
)
),
templateType = "TEXT"|"CHAT"
),
resource = list(
promptArn = "string"
)
)
),
retrieval = list(
serviceConfiguration = list(
s3 = list(
bucketName = "string"
)
)
),
storage = list(
serviceConfiguration = list(
s3 = list(
bucketName = "string"
)
)
)
),
inputs = list(
list(
expression = "string",
name = "string",
type = "String"|"Number"|"Boolean"|"Object"|"Array"
)
),
name = "string",
outputs = list(
list(
name = "string",
type = "String"|"Number"|"Boolean"|"Object"|"Array"
)
),
type = "Input"|"Output"|"KnowledgeBase"|"Condition"|"Lex"|"Prompt"|"LambdaFunction"|"Storage"|"Agent"|"Retrieval"|"Iterator"|"Collector"
)
)
),
description = "string",
executionRoleArn = "string",
id = "string",
name = "string",
status = "Failed"|"Prepared"|"Preparing"|"NotPrepared",
updatedAt = as.POSIXct(
"2015-01-01"
),
version = "string"
)
Request syntax¶
svc$update_flow(
customerEncryptionKeyArn = "string",
definition = list(
connections = list(
list(
configuration = list(
conditional = list(
condition = "string"
),
data = list(
sourceOutput = "string",
targetInput = "string"
)
),
name = "string",
source = "string",
target = "string",
type = "Data"|"Conditional"
)
),
nodes = list(
list(
configuration = list(
agent = list(
agentAliasArn = "string"
),
collector = list(),
condition = list(
conditions = list(
list(
expression = "string",
name = "string"
)
)
),
input = list(),
iterator = list(),
knowledgeBase = list(
guardrailConfiguration = list(
guardrailIdentifier = "string",
guardrailVersion = "string"
),
knowledgeBaseId = "string",
modelId = "string"
),
lambdaFunction = list(
lambdaArn = "string"
),
lex = list(
botAliasArn = "string",
localeId = "string"
),
output = list(),
prompt = list(
guardrailConfiguration = list(
guardrailIdentifier = "string",
guardrailVersion = "string"
),
sourceConfiguration = list(
inline = list(
additionalModelRequestFields = list(),
inferenceConfiguration = list(
text = list(
maxTokens = 123,
stopSequences = list(
"string"
),
temperature = 123.0,
topP = 123.0
)
),
modelId = "string",
templateConfiguration = list(
chat = list(
inputVariables = list(
list(
name = "string"
)
),
messages = list(
list(
content = list(
list(
text = "string"
)
),
role = "user"|"assistant"
)
),
system = list(
list(
text = "string"
)
),
toolConfiguration = list(
toolChoice = list(
any = list(),
auto = list(),
tool = list(
name = "string"
)
),
tools = list(
list(
toolSpec = list(
description = "string",
inputSchema = list(
json = list()
),
name = "string"
)
)
)
)
),
text = list(
inputVariables = list(
list(
name = "string"
)
),
text = "string"
)
),
templateType = "TEXT"|"CHAT"
),
resource = list(
promptArn = "string"
)
)
),
retrieval = list(
serviceConfiguration = list(
s3 = list(
bucketName = "string"
)
)
),
storage = list(
serviceConfiguration = list(
s3 = list(
bucketName = "string"
)
)
)
),
inputs = list(
list(
expression = "string",
name = "string",
type = "String"|"Number"|"Boolean"|"Object"|"Array"
)
),
name = "string",
outputs = list(
list(
name = "string",
type = "String"|"Number"|"Boolean"|"Object"|"Array"
)
),
type = "Input"|"Output"|"KnowledgeBase"|"Condition"|"Lex"|"Prompt"|"LambdaFunction"|"Storage"|"Agent"|"Retrieval"|"Iterator"|"Collector"
)
)
),
description = "string",
executionRoleArn = "string",
flowIdentifier = "string",
name = "string"
)