Create Prompt
bedrockagent_create_prompt | R Documentation |
Creates a prompt in your prompt library that you can add to a flow¶
Description¶
Creates a prompt in your prompt library that you can add to a flow. For more information, see Prompt management in Amazon Bedrock, Create a prompt using Prompt management and Prompt flows in Amazon Bedrock in the Amazon Bedrock User Guide.
Usage¶
bedrockagent_create_prompt(clientToken, customerEncryptionKeyArn,
defaultVariant, description, name, tags, variants)
Arguments¶
clientToken |
A unique, case-sensitive identifier to ensure that the API request completes no more than one time. If this token matches a previous request, Amazon Bedrock ignores the request, but does not return an error. For more information, see Ensuring idempotency. |
customerEncryptionKeyArn |
The Amazon Resource Name (ARN) of the KMS key to encrypt the prompt. |
defaultVariant |
The name of the default variant for the prompt. This value must
match the |
description |
A description for the prompt. |
name |
[required] A name for the prompt. |
tags |
Any tags that you want to attach to the prompt. For more information, see Tagging resources in Amazon Bedrock. |
variants |
A list of objects, each containing details about a variant of the prompt. |
Value¶
A list with the following syntax:
list(
arn = "string",
createdAt = as.POSIXct(
"2015-01-01"
),
customerEncryptionKeyArn = "string",
defaultVariant = "string",
description = "string",
id = "string",
name = "string",
updatedAt = as.POSIXct(
"2015-01-01"
),
variants = list(
list(
additionalModelRequestFields = list(),
genAiResource = list(
agent = list(
agentIdentifier = "string"
)
),
inferenceConfiguration = list(
text = list(
maxTokens = 123,
stopSequences = list(
"string"
),
temperature = 123.0,
topP = 123.0
)
),
metadata = list(
list(
key = "string",
value = "string"
)
),
modelId = "string",
name = "string",
templateConfiguration = list(
chat = list(
inputVariables = list(
list(
name = "string"
)
),
messages = list(
list(
content = list(
list(
cachePoint = list(
type = "default"
),
text = "string"
)
),
role = "user"|"assistant"
)
),
system = list(
list(
cachePoint = list(
type = "default"
),
text = "string"
)
),
toolConfiguration = list(
toolChoice = list(
any = list(),
auto = list(),
tool = list(
name = "string"
)
),
tools = list(
list(
cachePoint = list(
type = "default"
),
toolSpec = list(
description = "string",
inputSchema = list(
json = list()
),
name = "string"
)
)
)
)
),
text = list(
cachePoint = list(
type = "default"
),
inputVariables = list(
list(
name = "string"
)
),
text = "string"
)
),
templateType = "TEXT"|"CHAT"
)
),
version = "string"
)
Request syntax¶
svc$create_prompt(
clientToken = "string",
customerEncryptionKeyArn = "string",
defaultVariant = "string",
description = "string",
name = "string",
tags = list(
"string"
),
variants = list(
list(
additionalModelRequestFields = list(),
genAiResource = list(
agent = list(
agentIdentifier = "string"
)
),
inferenceConfiguration = list(
text = list(
maxTokens = 123,
stopSequences = list(
"string"
),
temperature = 123.0,
topP = 123.0
)
),
metadata = list(
list(
key = "string",
value = "string"
)
),
modelId = "string",
name = "string",
templateConfiguration = list(
chat = list(
inputVariables = list(
list(
name = "string"
)
),
messages = list(
list(
content = list(
list(
cachePoint = list(
type = "default"
),
text = "string"
)
),
role = "user"|"assistant"
)
),
system = list(
list(
cachePoint = list(
type = "default"
),
text = "string"
)
),
toolConfiguration = list(
toolChoice = list(
any = list(),
auto = list(),
tool = list(
name = "string"
)
),
tools = list(
list(
cachePoint = list(
type = "default"
),
toolSpec = list(
description = "string",
inputSchema = list(
json = list()
),
name = "string"
)
)
)
)
),
text = list(
cachePoint = list(
type = "default"
),
inputVariables = list(
list(
name = "string"
)
),
text = "string"
)
),
templateType = "TEXT"|"CHAT"
)
)
)